BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 2559766)

  • 21. [Breakdown of the blood-brain barrier and clearance of extravasated proteins after experimental brain injury].
    Fukuda K; Tanno H; Okimura Y; Nakamura M; Yamaura A
    No To Shinkei; 1994 Nov; 46(11):1030-7. PubMed ID: 7873275
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Avenues for entry of peripherally administered protein to the central nervous system in mouse, rat, and squirrel monkey.
    Balin BJ; Broadwell RD; Salcman M; el-Kalliny M
    J Comp Neurol; 1986 Sep; 251(2):260-80. PubMed ID: 3782501
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Platelet occlusion phenomenon after short- and long-term survival following complete cerebral ischemia in rats produced by cardiac arrest.
    Pluta R; Lossinsky AS; Walski M; Wisniewski HM; Mossakowski MJ
    J Hirnforsch; 1994; 35(4):463-71. PubMed ID: 7884209
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Brain edema and gliopathy induced by 6-aminonicotinamide intoxication in the central nervous system of rats.
    Sasaki S
    Am J Vet Res; 1982 Sep; 43(9):1691-5. PubMed ID: 6216837
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Serum proteins bypass the blood-brain fluid barriers for extracellular entry to the central nervous system.
    Broadwell RD; Sofroniew MV
    Exp Neurol; 1993 Apr; 120(2):245-63. PubMed ID: 8491281
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrastructural and immunohistochemical changes of fluorescent granular perithelial cells and the interaction of FGP cells to microglia after lipopolysaccharide administration.
    Mato M; Sakamoto A; Ookawara S; Takeuchi K; Suzuki K
    Anat Rec; 1998 Jul; 251(3):330-8. PubMed ID: 9669760
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Blood-brain barrier disruption in white matter lesions in a rat model of chronic cerebral hypoperfusion.
    Ueno M; Tomimoto H; Akiguchi I; Wakita H; Sakamoto H
    J Cereb Blood Flow Metab; 2002 Jan; 22(1):97-104. PubMed ID: 11807399
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regeneration of cerebral microvessels: a morphologic and histochemical study after local freeze-injury.
    Cancilla PA; Frommes SP; Kahn LE; DeBault LE
    Lab Invest; 1979 Jan; 40(1):74-82. PubMed ID: 762954
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Brain microvessels: factors altering their patency after the occlusion of a middle cerebral artery (Wistar rat).
    Garcia JH; Liu KF; Yoshida Y; Chen S; Lian J
    Am J Pathol; 1994 Sep; 145(3):728-40. PubMed ID: 8080052
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Blood-brain barrier breakdown by cold injury. Polyamine signals mediate acute stimulation of endocytosis, vesicular transport, and microvillus formation in rat cerebral capillaries.
    Trout JJ; Koenig H; Goldstone AD; Lu CY
    Lab Invest; 1986 Dec; 55(6):622-31. PubMed ID: 3097421
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Clostridium perfringens prototoxin-induced alteration of endothelial barrier antigen (EBA) immunoreactivity at the blood-brain barrier (BBB).
    Zhu C; Ghabriel MN; Blumbergs PC; Reilly PL; Manavis J; Youssef J; Hatami S; Finnie JW
    Exp Neurol; 2001 May; 169(1):72-82. PubMed ID: 11312560
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence for the possible function of the fluorescent granular perithelial cells in brain as scavengers of high-molecular-weight waste products.
    Mato M; Ookawara S; Sugamata M; Aikawa E
    Experientia; 1984 Apr; 40(4):399-402. PubMed ID: 6325229
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The vesiculo-vacuolar organelle (VVO): a distinct endothelial cell structure that provides a transcellular pathway for macromolecular extravasation.
    Dvorak AM; Kohn S; Morgan ES; Fox P; Nagy JA; Dvorak HF
    J Leukoc Biol; 1996 Jan; 59(1):100-15. PubMed ID: 8558058
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Uptake of exogenous substances and marked infoldings of the fluorescent granular pericyte in cerebral fine vessels.
    Mato M; Ookawara S; Kurihara K
    Am J Anat; 1980 Mar; 157(3):329-32. PubMed ID: 7405872
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electron microscopy of the blood-brain barrier in disease.
    Hirano A; Kawanami T; Llena JF
    Microsc Res Tech; 1994 Apr; 27(6):543-56. PubMed ID: 8012057
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Charge-related alterations of the cerebral endothelium.
    Nagy Z; Peters H; Hüttner I
    Lab Invest; 1983 Dec; 49(6):662-71. PubMed ID: 6656198
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Studies of the ultrastructure and permeability of the blood-brain barrier in the developing corpus callosum in postnatal rat brain using electron dense tracers.
    Xu J; Ling EA
    J Anat; 1994 Apr; 184 ( Pt 2)(Pt 2):227-37. PubMed ID: 8014116
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Response of cerebral microvasculature to brain injury.
    Maxwell WL; Irvine A; Adams JH; Graham DI; Gennarelli TA
    J Pathol; 1988 Aug; 155(4):327-35. PubMed ID: 3171774
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Increased caveolin-1 expression precedes decreased expression of occludin and claudin-5 during blood-brain barrier breakdown.
    Nag S; Venugopalan R; Stewart DJ
    Acta Neuropathol; 2007 Nov; 114(5):459-69. PubMed ID: 17687559
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cerebral small vessel disease-induced apolipoprotein E leakage is associated with Alzheimer disease and the accumulation of amyloid beta-protein in perivascular astrocytes.
    Utter S; Tamboli IY; Walter J; Upadhaya AR; Birkenmeier G; Pietrzik CU; Ghebremedhin E; Thal DR
    J Neuropathol Exp Neurol; 2008 Sep; 67(9):842-56. PubMed ID: 18716559
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.