BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 25597770)

  • 1. Nanomedicine for targeted photothermal cancer therapy: where are we now?
    Chen F; Cai W
    Nanomedicine (Lond); 2015 Jan; 10(1):1-3. PubMed ID: 25597770
    [No Abstract]   [Full Text] [Related]  

  • 2. CuS nanoparticles: clinically favorable materials for photothermal applications?
    Xiao Z
    Nanomedicine (Lond); 2014 Mar; 9(3):373-5. PubMed ID: 24746188
    [No Abstract]   [Full Text] [Related]  

  • 3. What potential does plasmonics-amplified synergistic immuno photothermal nanotherapy have for treatment of cancer?
    Vo-Dinh T; Inman BA
    Nanomedicine (Lond); 2018 Jan; 13(2):139-144. PubMed ID: 29231126
    [No Abstract]   [Full Text] [Related]  

  • 4. Synergistic nanomedicine by combined gene and photothermal therapy.
    Kim J; Kim J; Jeong C; Kim WJ
    Adv Drug Deliv Rev; 2016 Mar; 98():99-112. PubMed ID: 26748259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanomedicine applied to translational oncology: A future perspective on cancer treatment.
    Bregoli L; Movia D; Gavigan-Imedio JD; Lysaght J; Reynolds J; Prina-Mello A
    Nanomedicine; 2016 Jan; 12(1):81-103. PubMed ID: 26370707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gold nanocages for cancer detection and treatment.
    Skrabalak SE; Au L; Lu X; Li X; Xia Y
    Nanomedicine (Lond); 2007 Oct; 2(5):657-68. PubMed ID: 17976028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoparticles for thermal cancer therapy.
    Day ES; Morton JG; West JL
    J Biomech Eng; 2009 Jul; 131(7):074001. PubMed ID: 19640133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A tumor-targeting near-infrared laser-triggered drug delivery system based on GO@Ag nanoparticles for chemo-photothermal therapy and X-ray imaging.
    Shi J; Wang L; Zhang J; Ma R; Gao J; Liu Y; Zhang C; Zhang Z
    Biomaterials; 2014 Jul; 35(22):5847-61. PubMed ID: 24746963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cancer nanomedicine: from drug delivery to imaging.
    Chow EK; Ho D
    Sci Transl Med; 2013 Dec; 5(216):216rv4. PubMed ID: 24353161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging nanomedicine approaches fighting tumor metastasis: animal models, metastasis-targeted drug delivery, phototherapy, and immunotherapy.
    Liang C; Xu L; Song G; Liu Z
    Chem Soc Rev; 2016 Nov; 45(22):6250-6269. PubMed ID: 27333329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Europe as leaders in nanomedicine: let's go for it!
    Lévy L
    Nanomedicine (Lond); 2014 Apr; 9(4):389-91. PubMed ID: 24787438
    [No Abstract]   [Full Text] [Related]  

  • 12. Nanoparticles for treatment of atherosclerosis: challenges of plasmonic photothermal therapy in translational studies.
    Kharlamov AN; Zubarev IV; Shishkina EV; Shur VY
    Future Cardiol; 2018 Mar; 14(2):109-114. PubMed ID: 29336170
    [No Abstract]   [Full Text] [Related]  

  • 13. Nanoparticles for cancer therapy using magnetic forces.
    Tietze R; Lyer S; Dürr S; Alexiou C
    Nanomedicine (Lond); 2012 Mar; 7(3):447-57. PubMed ID: 22385201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical applications of magnetic nanoparticles for hyperthermia.
    Thiesen B; Jordan A
    Int J Hyperthermia; 2008 Sep; 24(6):467-74. PubMed ID: 18608593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Battling tumors with magnetic nanotherapeutics and hyperthermia: turning up the heat.
    Campbell RB
    Nanomedicine (Lond); 2007 Oct; 2(5):649-52. PubMed ID: 17976026
    [No Abstract]   [Full Text] [Related]  

  • 16. New Strategies in Cancer Nanomedicine.
    Tong R; Kohane DS
    Annu Rev Pharmacol Toxicol; 2016; 56():41-57. PubMed ID: 26514197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current Approaches of Photothermal Therapy in Treating Cancer Metastasis with Nanotherapeutics.
    Zou L; Wang H; He B; Zeng L; Tan T; Cao H; He X; Zhang Z; Guo S; Li Y
    Theranostics; 2016; 6(6):762-72. PubMed ID: 27162548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tumor blood perfusion-based requirement of nanoparticle dose-loadings for plasmonic photothermal therapy.
    Soni S; Sinha RK
    Nanomedicine (Lond); 2019 Jul; 14(14):1841-1855. PubMed ID: 31267842
    [No Abstract]   [Full Text] [Related]  

  • 19. Plasmonic photothermal therapy for atheroregression below Glagov threshold.
    Kharlamov AN
    Future Cardiol; 2013 May; 9(3):405-25. PubMed ID: 23668744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BSA-directed synthesis of CuS nanoparticles as a biocompatible photothermal agent for tumor ablation in vivo.
    Zhang C; Fu YY; Zhang X; Yu C; Zhao Y; Sun SK
    Dalton Trans; 2015 Aug; 44(29):13112-8. PubMed ID: 26106950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.