These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25597819)

  • 1. Silicone-grafted carbonaceous nanotubes with enhanced dispersion stability and electrorheological efficiency.
    Yin J; Wang X; Zhao X
    Nanotechnology; 2015 Feb; 26(6):065704. PubMed ID: 25597819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly stable nanofluid based on polyhedral oligomeric silsesquioxane-decorated graphene oxide nanosheets and its enhanced electro-responsive behavior.
    Li Y; Guan Y; Liu Y; Yin J; Zhao X
    Nanotechnology; 2016 May; 27(19):195702. PubMed ID: 27041243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced dielectric polarization and electro-responsive characteristic of graphene oxide-wrapped titania microspheres.
    Yin J; Shui Y; Dong Y; Zhao X
    Nanotechnology; 2014 Jan; 25(4):045702. PubMed ID: 24394540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dielectric and electrical properties of electrorheological carbon suspensions.
    Negita K; Misono Y; Yamaguchi T; Shinagawa J
    J Colloid Interface Sci; 2008 May; 321(2):452-8. PubMed ID: 18342876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monodisperse poly(2-methylaniline) coated polystyrene core-shell microspheres fabricated by controlled releasing process and their electrorheological stimuli-response under electric fields.
    Kwon SH; Liu YD; Choi HJ
    J Colloid Interface Sci; 2015 Feb; 440():9-15. PubMed ID: 25460683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dispersion Stability and Electrorheological Properties of Polyaniline Particle Suspensions Stabilized by Poly(vinyl methyl ether).
    Chin BD; Park OO
    J Colloid Interface Sci; 2001 Feb; 234(2):344-350. PubMed ID: 11161520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mixing effect of amine and carboxyl groups on electrorheological properties and its analysis by in situ FT-IR under an electric field.
    Ko YG; Lee HJ; Park YS; Woo JW; Choi US
    Phys Chem Chem Phys; 2013 Oct; 15(39):16527-32. PubMed ID: 23945542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sedimentation behaviour in electrorheological fluids based on suspensions of zeolite particles in silicone oil.
    Prekas K; Shah T; Soin N; Rangoussi M; Vassiliadis S; Siores E
    J Colloid Interface Sci; 2013 Jul; 401():58-64. PubMed ID: 23623409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New electrorheological fluid obtained from mercaptosilsesquioxane-modified silicate suspensions.
    Marins JA; Dahmouche K; Soares BG
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):133-9. PubMed ID: 25428054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrorheology of SI-ATRP-modified graphene oxide particles with poly(butyl methacrylate): effect of reduction and compatibility with silicone oil.
    Mrlik M; Ilcikova M; Osicka J; Kutalkova E; Minarik A; Vesel A; Mosnacek J
    RSC Adv; 2019 Jan; 9(3):1187-1198. PubMed ID: 35517996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly stable and efficient electrorheological suspensions with hydrophobic interaction.
    Liang Y; Yuan X; Wang L; Zhou X; Ren X; Huang Y; Zhang M; Wu J; Wen W
    J Colloid Interface Sci; 2020 Mar; 564():381-391. PubMed ID: 31923826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of kenaf cellulose carbamate and its smart electric stimuli-response.
    Gan S; Piao SH; Choi HJ; Zakaria S; Chia CH
    Carbohydr Polym; 2016 Feb; 137():693-700. PubMed ID: 26686181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrorheology of graphene oxide.
    Zhang WL; Liu YD; Choi HJ; Kim SG
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2267-72. PubMed ID: 22476845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gelation of chitin and chitosan dispersed suspensions under electric field: effect of degree of deacetylation.
    Ko YG; Shin SS; Choi US; Park YS; Woo JW
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1289-98. PubMed ID: 21425802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of phosphate microcrystalline rice husk based cellulose particles and their electrorheological response.
    Bae DH; Choi HJ; Choi K; Nam JD; Islam MS; Kao N
    Carbohydr Polym; 2017 Jun; 165():247-254. PubMed ID: 28363547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and electrorheological property of rare earth modified amorphous BaxSr1-xTiO3 gel electrorheological fluid.
    Wu Q; Zhao By; Chen le S; Fang C; Hu Ka
    J Colloid Interface Sci; 2005 Feb; 282(2):493-8. PubMed ID: 15589557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quasi-static electrorheological properties of hematite/silicone oil suspensions under DC electric fields.
    Espin MJ; Delgado AV; PÅ‚ocharski J
    Langmuir; 2005 May; 21(11):4896-903. PubMed ID: 15896029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Stimuli-Responsive Electrorheological Property of Poly(ionic liquid)s-Capsulated Polyaniline Particles.
    Zheng C; Dong Y; Liu Y; Zhao X; Yin J
    Polymers (Basel); 2017 Aug; 9(9):. PubMed ID: 30965690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of liquid phase on nanoparticle-based giant electrorheological fluid.
    Gong X; Wu J; Huang X; Wen W; Sheng P
    Nanotechnology; 2008 Apr; 19(16):165602. PubMed ID: 21825646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Electrorheological Response of Cellulose: A Double Effect of Modification by Urea-Terminated Silane.
    Liu Z; Chen P; Jin X; Wang LM; Liu YD; Choi HJ
    Polymers (Basel); 2018 Aug; 10(8):. PubMed ID: 30960792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.