These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 25597873)

  • 21. Oxalic acid has an additional, detoxifying function in Sclerotinia sclerotiorum pathogenesis.
    Heller A; Witt-Geiges T
    PLoS One; 2013; 8(8):e72292. PubMed ID: 23951305
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxalic acid is an elicitor of plant programmed cell death during Sclerotinia sclerotiorum disease development.
    Kim KS; Min JY; Dickman MB
    Mol Plant Microbe Interact; 2008 May; 21(5):605-12. PubMed ID: 18393620
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment.
    Williams B; Kabbage M; Kim HJ; Britt R; Dickman MB
    PLoS Pathog; 2011 Jun; 7(6):e1002107. PubMed ID: 21738471
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SsATG8 and SsNBR1 mediated-autophagy is required for fungal development, proteasomal stress response and virulence in Sclerotinia sclerotiorum.
    Zhang H; Li Y; Lai W; Huang K; Li Y; Wang Z; Chen X; Wang A
    Fungal Genet Biol; 2021 Dec; 157():103632. PubMed ID: 34710583
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cloning and Molecular Characterization of
    Xu Y; Wu M; Zhang J; Li G; Yang L
    J Fungi (Basel); 2022 Dec; 8(12):. PubMed ID: 36547637
    [No Abstract]   [Full Text] [Related]  

  • 26. Sclerotinia sclerotiorum: An Evaluation of Virulence Theories.
    Xu L; Li G; Jiang D; Chen W
    Annu Rev Phytopathol; 2018 Aug; 56():311-338. PubMed ID: 29958073
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relationships among endo-polygalacturonase, oxalate, pH, and plant polygalacturonase-inhibiting protein (PGIP) in the interaction between Sclerotinia sclerotiorum and soybean.
    Favaron F; Sella L; D'Ovidio R
    Mol Plant Microbe Interact; 2004 Dec; 17(12):1402-9. PubMed ID: 15597746
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant.
    Cessna SG; Sears VE; Dickman MB; Low PS
    Plant Cell; 2000 Nov; 12(11):2191-200. PubMed ID: 11090218
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of transcription of multiple genes at three developmental stages of the plant pathogen Sclerotinia sclerotiorum.
    Sexton AC; Cozijnsen AJ; Keniry A; Jewell E; Love CG; Batley J; Edwards D; Howlett BJ
    FEMS Microbiol Lett; 2006 May; 258(1):150-60. PubMed ID: 16630270
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improving nutritional quality and fungal tolerance in soya bean and grass pea by expressing an oxalate decarboxylase.
    Kumar V; Chattopadhyay A; Ghosh S; Irfan M; Chakraborty N; Chakraborty S; Datta A
    Plant Biotechnol J; 2016 Jun; 14(6):1394-405. PubMed ID: 26798990
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The C2H2 Transcription Factor SsZFH1 Regulates the Size, Number, and Development of Apothecia in
    Liu L; Lyu X; Pan Z; Wang Q; Mu W; Benny U; Rollins JA; Pan H
    Phytopathology; 2022 Jul; 112(7):1476-1485. PubMed ID: 35021860
    [No Abstract]   [Full Text] [Related]  

  • 32. Characterization of some culture factors affecting oxalate degradation by the mycoparasite Coniothyrium minitans.
    Ren L; Li G; Jiang D
    J Appl Microbiol; 2010 Jan; 108(1):173-80. PubMed ID: 20002909
    [TBL] [Abstract][Full Text] [Related]  

  • 33.
    Qin L; Nong J; Cui K; Tang X; Gong X; Xia Y; Xu Y; Qiu Y; Li X; Xia S
    Int J Mol Sci; 2023 Aug; 24(16):. PubMed ID: 37628791
    [No Abstract]   [Full Text] [Related]  

  • 34. The cAMP-dependent protein kinase A pathway perturbs autophagy and plays important roles in development and virulence of Sclerotinia sclerotiorum.
    Yu PL; Rollins JA
    Fungal Biol; 2022 Jan; 126(1):20-34. PubMed ID: 34930556
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative Transcriptome Analysis between the Fungal Plant Pathogens Sclerotinia sclerotiorum and S. trifoliorum Using RNA Sequencing.
    Qiu D; Xu L; Vandemark G; Chen W
    J Hered; 2016 Mar; 107(2):163-72. PubMed ID: 26615185
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanisms of Broad Host Range Necrotrophic Pathogenesis in Sclerotinia sclerotiorum.
    Liang X; Rollins JA
    Phytopathology; 2018 Oct; 108(10):1128-1140. PubMed ID: 30048598
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Early Transcriptional Response to DNA Virus Infection in
    Ding F; Cheng J; Fu Y; Chen T; Li B; Jiang D; Xie J
    Viruses; 2019 Mar; 11(3):. PubMed ID: 30893849
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An atypical forkhead-containing transcription factor SsFKH1 is involved in sclerotial formation and is essential for pathogenicity in Sclerotinia sclerotiorum.
    Fan H; Yu G; Liu Y; Zhang X; Liu J; Zhang Y; Rollins JA; Sun F; Pan H
    Mol Plant Pathol; 2017 Sep; 18(7):963-975. PubMed ID: 27353472
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The putative Gγ subunit gene MGG1 is required for conidiation, appressorium formation, mating and pathogenicity in Magnaporthe oryzae.
    Li Y; Que Y; Liu Y; Yue X; Meng X; Zhang Z; Wang Z
    Curr Genet; 2015 Nov; 61(4):641-51. PubMed ID: 25944571
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A MAP kinase cascade broadly regulates the lifestyle of Sclerotinia sclerotiorum and can be targeted by HIGS for disease control.
    Tian L; Li J; Xu Y; Qiu Y; Zhang Y; Li X
    Plant J; 2024 Apr; 118(2):324-344. PubMed ID: 38149487
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.