These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 25597963)

  • 21. Electrical Impedance Spectroscopy for Ex-Vivo Breast Cancer Tissues Analysis.
    Meani F; Barbalace G; Meroni D; Pagani O; Perriard U; Pagnamenta A; Aliverti A; Meroni E
    Ann Biomed Eng; 2023 Jul; 51(7):1535-1546. PubMed ID: 37061594
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz.
    Joines WT; Zhang Y; Li C; Jirtle RL
    Med Phys; 1994 Apr; 21(4):547-50. PubMed ID: 8058021
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A broadband high-frequency electrical impedance tomography system for breast imaging.
    Halter RJ; Hartov A; Paulsen KD
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):650-9. PubMed ID: 18270001
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of mechanical properties of human trabecular bone by electrical measurements.
    Sierpowska J; Hakulinen MA; Töyräs J; Day JS; Weinans H; Jurvelin JS; Lappalainen R
    Physiol Meas; 2005 Apr; 26(2):S119-31. PubMed ID: 15798225
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Magnetic resonance electrical impedance tomography for measuring electrical conductivity during electroporation.
    Kranjc M; Bajd F; Serša I; Miklavčič D
    Physiol Meas; 2014 Jun; 35(6):985-96. PubMed ID: 24844299
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Variation in dielectric properties due to pathological changes in human liver.
    Peyman A; Kos B; Djokić M; Trotovšek B; Limbaeck-Stokin C; Serša G; Miklavčič D
    Bioelectromagnetics; 2015 Dec; 36(8):603-12. PubMed ID: 26508012
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Numerical sensitivity modeling for the detection of skin tumors by using tetrapolar probe.
    Ramos A; Bertemes-Filho P
    Electromagn Biol Med; 2011 Dec; 30(4):235-45. PubMed ID: 22047461
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparison of two- and four-electrode techniques to characterize blood impedance for the frequency range of 100 Hz to 100 MHz.
    Chang ZY; Pop GM; Meijer GM
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):1247-9. PubMed ID: 18334424
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparison study of electrodes for neonate electrical impedance tomography.
    Rahal M; Khor JM; Demosthenous A; Tizzard A; Bayford R
    Physiol Meas; 2009 Jun; 30(6):S73-84. PubMed ID: 19491443
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of the validity of the mathematical assumptions of electrical impedance tomography for human head tissues.
    Williams T; Bouazza-Marouf K; Zecca M; Green AL
    Biomed Phys Eng Express; 2021 Feb; 7(2):. PubMed ID: 33513587
    [No Abstract]   [Full Text] [Related]  

  • 31. Comparison of human uterine cervical electrical impedance measurements derived using two tetrapolar probes of different sizes.
    Gandhi SV; Walker DC; Brown BH; Anumba DO
    Biomed Eng Online; 2006 Nov; 5():62. PubMed ID: 17125510
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interrelationships between electrical properties and microstructure of human trabecular bone.
    Sierpowska J; Hakulinen MA; Töyräs J; Day JS; Weinans H; Kiviranta I; Jurvelin JS; Lappalainen R
    Phys Med Biol; 2006 Oct; 51(20):5289-303. PubMed ID: 17019039
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Some early results related to electrical impedance of normal and abnormal gastric tissue.
    Keshtkar A; Salehnia Z; Somi MH; Eftekharsadat AT
    Phys Med; 2012 Jan; 28(1):19-24. PubMed ID: 21334938
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ex-Vivo Characterization of Bioimpedance Spectroscopy of Normal, Ischemic and Hemorrhagic Rabbit Brain Tissue at Frequencies from 10 Hz to 1 MHz.
    Yang L; Zhang G; Song J; Dai M; Xu C; Dong X; Fu F
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27869707
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Patient factors affecting thermal lesion size with an impedance-based radiofrequency ablation system.
    Glaiberman CB; Pilgram TK; Brown DB
    J Vasc Interv Radiol; 2005 Oct; 16(10):1341-8. PubMed ID: 16221905
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [In vivo measurement of rabbits brain impedance frequency response and the elementary imaging of EIT].
    Wu X; Dong X; Qin M; Fu F; Wang Y; You F; Xiang H; Liu R; Shi X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Mar; 20(1):49-51. PubMed ID: 12744161
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A feasibility study of magnetic resonance driven electrical impedance tomography using a phantom.
    Wan Y; Negishi M; Constable RT
    Physiol Meas; 2013 Jun; 34(6):623-44. PubMed ID: 23719063
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrical property sensing biopsy needle for prostate cancer detection.
    Mishra V; Schned AR; Hartov A; Heaney JA; Seigne J; Halter RJ
    Prostate; 2013 Nov; 73(15):1603-13. PubMed ID: 23996675
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accuracy of root canal length determination with the impedance ratio method.
    Jan J; Krizaj D
    Int Endod J; 2009 Sep; 42(9):819-26. PubMed ID: 19549150
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of the temperature-dependent electric conductivity of liver tissue ex vivo and in vivo: Importance for therapy planning for the radiofrequency ablation of liver tumours.
    Zurbuchen U; Holmer C; Lehmann KS; Stein T; Roggan A; Seifarth C; Buhr HJ; Ritz JP
    Int J Hyperthermia; 2010 Feb; 26(1):26-33. PubMed ID: 20100050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.