These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
696 related articles for article (PubMed ID: 25597974)
1. Green cheese: partial life cycle assessment of greenhouse gas emissions and energy intensity of integrated dairy production and bioenergy systems. Aguirre-Villegas HA; Passos-Fonseca TH; Reinemann DJ; Armentano LE; Wattiaux MA; Cabrera VE; Norman JM; Larson R J Dairy Sci; 2015 Mar; 98(3):1571-92. PubMed ID: 25597974 [TBL] [Abstract][Full Text] [Related]
3. Mitigating the environmental impacts of milk production via anaerobic digestion of manure: case study of a dairy farm in the Po Valley. Battini F; Agostini A; Boulamanti AK; Giuntoli J; Amaducci S Sci Total Environ; 2014 May; 481():196-208. PubMed ID: 24598150 [TBL] [Abstract][Full Text] [Related]
4. Feeding strategies and manure management for cost-effective mitigation of greenhouse gas emissions from dairy farms in Wisconsin. Dutreuil M; Wattiaux M; Hardie CA; Cabrera VE J Dairy Sci; 2014 Sep; 97(9):5904-17. PubMed ID: 24996278 [TBL] [Abstract][Full Text] [Related]
5. The carbon footprint of integrated milk production and renewable energy systems - A case study. Vida E; Tedesco DEA Sci Total Environ; 2017 Dec; 609():1286-1294. PubMed ID: 28793397 [TBL] [Abstract][Full Text] [Related]
6. Does increasing milk yield per cow reduce greenhouse gas emissions? A system approach. Zehetmeier M; Baudracco J; Hoffmann H; Heißenhuber A Animal; 2012 Jan; 6(1):154-66. PubMed ID: 22436163 [TBL] [Abstract][Full Text] [Related]
7. Assessment of carbon footprint of milk production and identification of its major determinants in smallholder dairy farms in Karnataka, India. Mech A; Devi GL; Sivaram M; Sirohi S; Dhali A; Kolte AP; Malik PK; Veeranna RK; Niketha L; Bhatta R J Dairy Sci; 2023 Dec; 106(12):8847-8860. PubMed ID: 37641313 [TBL] [Abstract][Full Text] [Related]
8. Effect of feeding strategies and cropping systems on greenhouse gas emission from Wisconsin certified organic dairy farms. Liang D; Sun F; Wattiaux MA; Cabrera VE; Hedtcke JL; Silva EM J Dairy Sci; 2017 Jul; 100(7):5957-5973. PubMed ID: 28501399 [TBL] [Abstract][Full Text] [Related]
9. Effect of farming strategies on environmental impact of intensive dairy farms in Italy. Guerci M; Bava L; Zucali M; Sandrucci A; Penati C; Tamburini A J Dairy Res; 2013 Aug; 80(3):300-8. PubMed ID: 23806128 [TBL] [Abstract][Full Text] [Related]
10. Greenhouse gas, water, and land footprint per unit of production of the California dairy industry over 50 years. Naranjo A; Johnson A; Rossow H; Kebreab E J Dairy Sci; 2020 Apr; 103(4):3760-3773. PubMed ID: 32037166 [TBL] [Abstract][Full Text] [Related]
11. Carbon footprint of dairy goat milk production in New Zealand. Robertson K; Symes W; Garnham M J Dairy Sci; 2015 Jul; 98(7):4279-93. PubMed ID: 25981064 [TBL] [Abstract][Full Text] [Related]
12. Estimating the impact of clinical mastitis in dairy cows on greenhouse gas emissions using a dynamic stochastic simulation model: a case study. Mostert PF; Bokkers EAM; de Boer IJM; van Middelaar CE Animal; 2019 Dec; 13(12):2913-2921. PubMed ID: 31210122 [TBL] [Abstract][Full Text] [Related]
13. Impact of nitrate and 3-nitrooxypropanol on the carbon footprints of milk from cattle produced in confined-feeding systems across regions in the United States: A life cycle analysis. Uddin ME; Tricarico JM; Kebreab E J Dairy Sci; 2022 Jun; 105(6):5074-5083. PubMed ID: 35346477 [TBL] [Abstract][Full Text] [Related]
14. Life-cycle assessment of greenhouse gas emissions from dairy production in Eastern Canada: a case study. Mc Geough EJ; Little SM; Janzen HH; McAllister TA; McGinn SM; Beauchemin KA J Dairy Sci; 2012 Sep; 95(9):5164-5175. PubMed ID: 22916922 [TBL] [Abstract][Full Text] [Related]
15. Relative emissions intensity of dairy production systems: employing different functional units in life-cycle assessment. Ross SA; Topp CFE; Ennos RA; Chagunda MGG Animal; 2017 Aug; 11(8):1381-1388. PubMed ID: 28183378 [TBL] [Abstract][Full Text] [Related]
16. Dietary concentrate supplementation increases milk production and reduces predicted greenhouse gas emission intensity in pasture-based commercial dairy farms. Dida MF; Garcia SC; Gonzalez LA J Dairy Sci; 2024 Aug; 107(8):5639-5652. PubMed ID: 38522827 [TBL] [Abstract][Full Text] [Related]
17. Temporal, spatial, and management variability in the carbon footprint of New Zealand milk. Ledgard SF; Falconer SJ; Abercrombie R; Philip G; Hill JP J Dairy Sci; 2020 Jan; 103(1):1031-1046. PubMed ID: 31759588 [TBL] [Abstract][Full Text] [Related]
18. A case study of the carbon footprint of milk from high-performing confinement and grass-based dairy farms. O'Brien D; Capper JL; Garnsworthy PC; Grainger C; Shalloo L J Dairy Sci; 2014 Mar; 97(3):1835-51. PubMed ID: 24440256 [TBL] [Abstract][Full Text] [Related]
19. Relating the carbon footprint of milk from Irish dairy farms to economic performance. O'Brien D; Hennessy T; Moran B; Shalloo L J Dairy Sci; 2015 Oct; 98(10):7394-407. PubMed ID: 26254524 [TBL] [Abstract][Full Text] [Related]
20. Environmental implications of anaerobic digestion for manure management in dairy farms in Mexico: a life cycle perspective. Rivas-García P; Botello-Álvarez JE; Abel Seabra JE; da Silva Walter AC; Estrada-Baltazar A Environ Technol; 2015; 36(17):2198-209. PubMed ID: 25732709 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]