BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 25598025)

  • 1. Revisiting cerebral postischemic reperfusion injury: new insights in understanding reperfusion failure, hemorrhage, and edema.
    Bai J; Lyden PD
    Int J Stroke; 2015 Feb; 10(2):143-52. PubMed ID: 25598025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minocycline and hypothermia for reperfusion injury after focal cerebral ischemia in the rat: effects on BBB breakdown and MMP expression in the acute and subacute phase.
    Nagel S; Su Y; Horstmann S; Heiland S; Gardner H; Koziol J; Martinez-Torres FJ; Wagner S
    Brain Res; 2008 Jan; 1188():198-206. PubMed ID: 18031717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recanalization and reperfusion therapies for acute ischemic stroke.
    Molina CA; Alvarez-SabĂ­n J
    Cerebrovasc Dis; 2009; 27 Suppl 1():162-7. PubMed ID: 19342847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating therapeutic targets for reperfusion-related brain hemorrhage.
    Maier CM; Hsieh L; Crandall T; Narasimhan P; Chan PH
    Ann Neurol; 2006 Jun; 59(6):929-38. PubMed ID: 16673393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The blood-brain barrier is continuously open for several weeks following transient focal cerebral ischemia.
    Strbian D; Durukan A; Pitkonen M; Marinkovic I; Tatlisumak E; Pedrono E; Abo-Ramadan U; Tatlisumak T
    Neuroscience; 2008 Apr; 153(1):175-81. PubMed ID: 18367342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathophysiology and treatment of cerebral ischemia.
    Nagahiro S; Uno M; Sato K; Goto S; Morioka M; Ushio Y
    J Med Invest; 1998 Aug; 45(1-4):57-70. PubMed ID: 9864965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reperfusion injury following cerebral ischemia: pathophysiology, MR imaging, and potential therapies.
    Pan J; Konstas AA; Bateman B; Ortolano GA; Pile-Spellman J
    Neuroradiology; 2007 Feb; 49(2):93-102. PubMed ID: 17177065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The complexity of neurobiological processes in acute ischemic stroke.
    Brouns R; De Deyn PP
    Clin Neurol Neurosurg; 2009 Jul; 111(6):483-95. PubMed ID: 19446389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcitonin gene-related peptide prevents blood-brain barrier injury and brain edema induced by focal cerebral ischemia reperfusion.
    Liu Z; Liu Q; Cai H; Xu C; Liu G; Li Z
    Regul Pept; 2011 Nov; 171(1-3):19-25. PubMed ID: 21718723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of cerebrovascular parasympathetic and sensory innervation to the development of cerebral edema in rat focal ischemia and reperfusion.
    Umemura A; Yamada K
    Neurosci Lett; 1996 Sep; 215(2):134-6. PubMed ID: 8888014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early T1- and T2-weighted MRI signatures of transient and permanent middle cerebral artery occlusion in a murine stroke model studied at 9.4T.
    Barber PA; Hoyte L; Kirk D; Foniok T; Buchan A; Tuor U
    Neurosci Lett; 2005 Nov; 388(1):54-9. PubMed ID: 16055267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-ischemic leakiness of the blood-brain barrier: a quantitative and systematic assessment by Patlak plots.
    Abo-Ramadan U; Durukan A; Pitkonen M; Marinkovic I; Tatlisumak E; Pedrono E; Soinne L; Strbian D; Tatlisumak T
    Exp Neurol; 2009 Sep; 219(1):328-33. PubMed ID: 19520075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Melatonin decreases neurovascular oxidative/nitrosative damage and protects against early increases in the blood-brain barrier permeability after transient focal cerebral ischemia in mice.
    Chen HY; Chen TY; Lee MY; Chen ST; Hsu YS; Kuo YL; Chang GL; Wu TS; Lee EJ
    J Pineal Res; 2006 Sep; 41(2):175-82. PubMed ID: 16879324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasma 3-nitrotyrosine estimates the reperfusion-induced cerebrovascular stress, whereas matrix metalloproteinases mainly reflect plasma activity: a study in patients treated with thrombolysis or endovascular recanalization.
    Bas DF; Topcuoglu MA; Gursoy-Ozdemir Y; Saatci I; Bodur E; Dalkara T
    J Neurochem; 2012 Nov; 123 Suppl 2():138-47. PubMed ID: 23050651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurophysiological monitoring, magnetic resonance imaging, and histological assays confirm the beneficial effects of moderate hypothermia after epidural focal mass lesion development in rodents.
    Burger R; Bendszus M; Vince GH; Solymosi L; Roosen K
    Neurosurgery; 2004 Mar; 54(3):701-11; discussion 711-2. PubMed ID: 15028147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuroprotective effects of postconditioning on lipid peroxidation and apoptosis after focal cerebral ischemia/reperfusion injury in rats.
    Abas F; Alkan T; Goren B; Taskapilioglu O; Sarandol E; Tolunay S
    Turk Neurosurg; 2010 Jan; 20(1):1-8. PubMed ID: 20066614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ischemic preconditioning attenuates brain injury induced by ischemia/reperfusion during moderate hypothermia low-flow procedures.
    Ma ZF; Chen W; Cao CC; Chen X
    Int J Neurosci; 2014 Nov; 124(11):824-33. PubMed ID: 24433123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complete cerebral ischemia, prostacyclin deficiency, and therapeutic possibilities.
    Pluta R
    Acta Neurochir Suppl (Wien); 1994; 60():303-6. PubMed ID: 7976573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vascular integrin immunoreactivity is selectively lost on capillaries during rat focal cerebral ischemia and reperfusion.
    Burggraf D; Trinkl A; Burk J; Martens HK; Dichgans M; Hamann GF
    Brain Res; 2008 Jan; 1189():189-97. PubMed ID: 18045575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of CCR-2 chemokine receptor activation in ischemic preconditioning and postconditioning of brain in mice.
    Rehni AK; Singh TG
    Cytokine; 2012 Oct; 60(1):83-9. PubMed ID: 22704692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.