These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 25598050)

  • 21. Identifying and characterizing resting state networks in temporally dynamic functional connectomes.
    Zhang X; Li X; Jin C; Chen H; Li K; Zhu D; Jiang X; Zhang T; Lv J; Hu X; Han J; Zhao Q; Guo L; Li L; Liu T
    Brain Topogr; 2014 Nov; 27(6):747-65. PubMed ID: 24903106
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of spatio-temporal decomposition techniques for group analysis of fMRI resting state data sets.
    Afshin-Pour B; Grady C; Strother S
    Neuroimage; 2014 Feb; 87():363-82. PubMed ID: 24201012
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional connectomics from resting-state fMRI.
    Smith SM; Vidaurre D; Beckmann CF; Glasser MF; Jenkinson M; Miller KL; Nichols TE; Robinson EC; Salimi-Khorshidi G; Woolrich MW; Barch DM; Uğurbil K; Van Essen DC
    Trends Cogn Sci; 2013 Dec; 17(12):666-82. PubMed ID: 24238796
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic effective connectivity.
    Zarghami TS; Friston KJ
    Neuroimage; 2020 Feb; 207():116453. PubMed ID: 31821868
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bayesian networks for fMRI: a primer.
    Mumford JA; Ramsey JD
    Neuroimage; 2014 Feb; 86():573-82. PubMed ID: 24140939
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Are you thinking what I'm thinking? Synchronization of resting fMRI time-series across subjects.
    Joshi AA; Chong M; Li J; Choi S; Leahy RM
    Neuroimage; 2018 May; 172():740-752. PubMed ID: 29428580
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extracting intrinsic functional networks with feature-based group independent component analysis.
    Calhoun VD; Allen E
    Psychometrika; 2013 Apr; 78(2):243-59. PubMed ID: 25107615
    [TBL] [Abstract][Full Text] [Related]  

  • 28. BrainSync: An Orthogonal Transformation for Synchronization of fMRI Data Across Subjects.
    Joshi AA; Chong M; Leahy RM
    Med Image Comput Comput Assist Interv; 2017 Sep; 10433():486-494. PubMed ID: 29075682
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An automated pipeline for constructing personalized virtual brains from multimodal neuroimaging data.
    Schirner M; Rothmeier S; Jirsa VK; McIntosh AR; Ritter P
    Neuroimage; 2015 Aug; 117():343-57. PubMed ID: 25837600
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The dynamic functional connectome: State-of-the-art and perspectives.
    Preti MG; Bolton TA; Van De Ville D
    Neuroimage; 2017 Oct; 160():41-54. PubMed ID: 28034766
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mapping the mouse brain with rs-fMRI: An optimized pipeline for functional network identification.
    Zerbi V; Grandjean J; Rudin M; Wenderoth N
    Neuroimage; 2015 Dec; 123():11-21. PubMed ID: 26296501
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimising neonatal fMRI data analysis: Design and validation of an extended dHCP preprocessing pipeline to characterise noxious-evoked brain activity in infants.
    Baxter L; Fitzgibbon S; Moultrie F; Goksan S; Jenkinson M; Smith S; Andersson J; Duff E; Slater R
    Neuroimage; 2019 Feb; 186():286-300. PubMed ID: 30414984
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wavelet-based clustering of resting state MRI data in the rat.
    Medda A; Hoffmann L; Magnuson M; Thompson G; Pan WJ; Keilholz S
    Magn Reson Imaging; 2016 Jan; 34(1):35-43. PubMed ID: 26481903
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional Connectivity-Based Parcellation of the Thalamus: An Unsupervised Clustering Method and Its Validity Investigation.
    Fan Y; Nickerson LD; Li H; Ma Y; Lyu B; Miao X; Zhuo Y; Ge J; Zou Q; Gao JH
    Brain Connect; 2015 Dec; 5(10):620-30. PubMed ID: 26106821
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multi-subject fMRI analysis via combined independent component analysis and shift-invariant canonical polyadic decomposition.
    Kuang LD; Lin QH; Gong XF; Cong F; Sui J; Calhoun VD
    J Neurosci Methods; 2015 Dec; 256():127-40. PubMed ID: 26327319
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Independent component model of the default-mode brain function: combining individual-level and population-level analyses in resting-state fMRI.
    Esposito F; Aragri A; Pesaresi I; Cirillo S; Tedeschi G; Marciano E; Goebel R; Di Salle F
    Magn Reson Imaging; 2008 Sep; 26(7):905-13. PubMed ID: 18486388
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting behavior through dynamic modes in resting-state fMRI data.
    Ikeda S; Kawano K; Watanabe S; Yamashita O; Kawahara Y
    Neuroimage; 2022 Feb; 247():118801. PubMed ID: 34896588
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Graph-theory based parcellation of functional subunits in the brain from resting-state fMRI data.
    Shen X; Papademetris X; Constable RT
    Neuroimage; 2010 Apr; 50(3):1027-35. PubMed ID: 20060479
    [TBL] [Abstract][Full Text] [Related]  

  • 39. From EEG to BOLD: brain mapping and estimating transfer functions in simultaneous EEG-fMRI acquisitions.
    Sato JR; Rondinoni C; Sturzbecher M; de Araujo DB; Amaro E
    Neuroimage; 2010 May; 50(4):1416-26. PubMed ID: 20116435
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Hierarchical Bayesian Mixture Model Approach for Analysis of Resting-State Functional Brain Connectivity: An Alternative to Thresholding.
    Gorbach T; Lundquist A; de Luna X; Nyberg L; Salami A
    Brain Connect; 2020 Jun; 10(5):202-211. PubMed ID: 32308015
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.