BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 25598143)

  • 1. SNARE-RNAi results in higher terpene emission from ectopically expressed caryophyllene synthase in Nicotiana benthamiana.
    Ting HM; Delatte TL; Kolkman P; Misas-Villamil JC; van der Hoorn RA; Bouwmeester HJ; van der Krol AR
    Mol Plant; 2015 Mar; 8(3):454-66. PubMed ID: 25598143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. (+)-Valencene production in Nicotiana benthamiana is increased by down-regulation of competing pathways.
    Cankar K; Jongedijk E; Klompmaker M; Majdic T; Mumm R; Bouwmeester H; Bosch D; Beekwilder J
    Biotechnol J; 2015 Jan; 10(1):180-9. PubMed ID: 25159317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering storage capacity for volatile sesquiterpenes in Nicotiana benthamiana leaves.
    Delatte TL; Scaiola G; Molenaar J; de Sousa Farias K; Alves Gomes Albertti L; Busscher J; Verstappen F; Carollo C; Bouwmeester H; Beekwilder J
    Plant Biotechnol J; 2018 Dec; 16(12):1997-2006. PubMed ID: 29682901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional expression and characterization of sesquiterpene synthases from Artemisia annua L. using transient expression system in Nicotiana benthamiana.
    Kanagarajan S; Muthusamy S; Gliszczyńska A; Lundgren A; Brodelius PE
    Plant Cell Rep; 2012 Jul; 31(7):1309-19. PubMed ID: 22565787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of multiple terpenes of different chain lengths by subcellular targeting of multi-substrate terpene synthase in plants.
    Dhandapani S; Tjhang JG; Jang IC
    Metab Eng; 2020 Sep; 61():397-405. PubMed ID: 32795613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide analysis of terpene synthases in soybean: functional characterization of GmTPS3.
    Liu J; Huang F; Wang X; Zhang M; Zheng R; Wang J; Yu D
    Gene; 2014 Jul; 544(1):83-92. PubMed ID: 24768723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of the de novo transcriptome analysis of silver-leaf nightshade (Solanum elaeagnifolium) to identify gene expression changes associated with wounding and terpene biosynthesis.
    Tsaballa A; Nikolaidis A; Trikka F; Ignea C; Kampranis SC; Makris AM; Argiriou A
    BMC Genomics; 2015 Jul; 16(1):504. PubMed ID: 26149407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implementation of CsLIS/NES in linalool biosynthesis involves transcript splicing regulation in Camellia sinensis.
    Liu GF; Liu JJ; He ZR; Wang FM; Yang H; Yan YF; Gao MJ; Gruber MY; Wan XC; Wei S
    Plant Cell Environ; 2018 Jan; 41(1):176-186. PubMed ID: 28963730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The terpene synthase gene family in Gossypium hirsutum harbors a linalool synthase GhTPS12 implicated in direct defence responses against herbivores.
    Huang XZ; Xiao YT; Köllner TG; Jing WX; Kou JF; Chen JY; Liu DF; Gu SH; Wu JX; Zhang YJ; Guo YY
    Plant Cell Environ; 2018 Jan; 41(1):261-274. PubMed ID: 29044662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of two genes for the biosynthesis of the labdane diterpene Z-abienol in tobacco (Nicotiana tabacum) glandular trichomes.
    Sallaud C; Giacalone C; Töpfer R; Goepfert S; Bakaher N; Rösti S; Tissier A
    Plant J; 2012 Oct; 72(1):1-17. PubMed ID: 22672125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of bacterial suspension water occupying the intercellular space of detached leaves after agroinfiltration improves the yield of recombinant hemagglutinin in a Nicotiana benthamiana transient gene expression system.
    Fujiuchi N; Matsuda R; Matoba N; Fujiwara K
    Biotechnol Bioeng; 2016 Apr; 113(4):901-6. PubMed ID: 26461274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homologous and heterologous expression of grapevine E-(β)-caryophyllene synthase (VvGwECar2).
    Salvagnin U; Carlin S; Angeli S; Vrhovsek U; Anfora G; Malnoy M; Martens S
    Phytochemistry; 2016 Nov; 131():76-83. PubMed ID: 27561253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High levels of expression of fibroblast growth factor 21 in transgenic tobacco (Nicotiana benthamiana).
    Fu H; Pang S; Xue P; Yang J; Liu X; Wang Y; Li T; Li H; Li X
    Appl Biochem Biotechnol; 2011 Sep; 165(2):465-75. PubMed ID: 21505802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tomato leaf curl Yunnan virus-encoded C4 induces cell division through enhancing stability of Cyclin D 1.1 via impairing NbSKη -mediated phosphorylation in Nicotiana benthamiana.
    Mei Y; Yang X; Huang C; Zhang X; Zhou X
    PLoS Pathog; 2018 Jan; 14(1):e1006789. PubMed ID: 29293689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mouse lipogenic proteins promote the co-accumulation of triacylglycerols and sesquiterpenes in plant cells.
    Cai Y; Whitehead P; Chappell J; Chapman KD
    Planta; 2019 Jul; 250(1):79-94. PubMed ID: 30919065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and Functional Characterization of New Terpene Synthase Genes from Traditional Edible Plants.
    Hattan JI; Shindo K; Sasaki T; Misawa N
    J Oleo Sci; 2018; 67(10):1235-1246. PubMed ID: 30305556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants.
    Wu S; Schalk M; Clark A; Miles RB; Coates R; Chappell J
    Nat Biotechnol; 2006 Nov; 24(11):1441-7. PubMed ID: 17057703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unraveling the terpene synthase family and characterization of BsTPS2 contributing to (S)-( +)-linalool biosynthesis in Boswellia.
    Bhargav P; Chaurasia S; Kumar A; Srivastava G; Pant Y; Chanotiya CS; Ghosh S
    Plant Mol Biol; 2023 Nov; 113(4-5):219-236. PubMed ID: 37898975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid Combinatorial Coexpression of Biosynthetic Genes by Transient Expression in the Plant Host Nicotiana benthamiana.
    Chuang L; Franke J
    Methods Mol Biol; 2022; 2489():395-420. PubMed ID: 35524061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetically engineered maize plants reveal distinct costs and benefits of constitutive volatile emissions in the field.
    Robert CA; Erb M; Hiltpold I; Hibbard BE; Gaillard MD; Bilat J; Degenhardt J; Cambet-Petit-Jean X; Turlings TC; Zwahlen C
    Plant Biotechnol J; 2013 Jun; 11(5):628-39. PubMed ID: 23425633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.