BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 25598360)

  • 1. Sonochemical synthesis of gold nanoparticles by using high intensity focused ultrasound.
    Yusof NS; Ashokkumar M
    Chemphyschem; 2015 Mar; 16(4):775-81. PubMed ID: 25598360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring of transient cavitation induced by ultrasound and intense pulsed light in presence of gold nanoparticles.
    Sazgarnia A; Shanei A; Shanei MM
    Ultrason Sonochem; 2014 Jan; 21(1):268-74. PubMed ID: 23938062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of Gold Nanoparticle-Mediated-Enhanced Hyperthermia Using MR-Guided High-Intensity Focused Ultrasound Ablation Procedure.
    Devarakonda SB; Myers MR; Lanier M; Dumoulin C; Banerjee RK
    Nano Lett; 2017 Apr; 17(4):2532-2538. PubMed ID: 28287747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Heat Transfer Enhancement Between Magnetic and Gold Nanoparticles During HIFU Sonication.
    Devarakonda SB; Myers MR; Banerjee RK
    J Biomech Eng; 2018 Aug; 140(8):. PubMed ID: 30003252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study on generating hydroxyl radicals by single and two-frequency ultrasound with gold nanoparticles and protoporphyrin IX.
    Tabatabaei ZS; Rajabi O; Nassirli H; Vejdani Noghreiyan A; Sazgarnia A
    Australas Phys Eng Sci Med; 2019 Dec; 42(4):1039-1047. PubMed ID: 31617155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UV-Vis and NMR study of the formation of gold nanoparticles by citrate reduction: observation of gold-citrate aggregates.
    Doyen M; Bartik K; Bruylants G
    J Colloid Interface Sci; 2013 Jun; 399():1-5. PubMed ID: 23538051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of stabilizer-free gold nanoparticles by pulse sonoelectrochemical method.
    Shen Q; Min Q; Shi J; Jiang L; Hou W; Zhu JJ
    Ultrason Sonochem; 2011 Jan; 18(1):231-7. PubMed ID: 20579926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyper-Rayleigh scattering from gold nanoparticles: effect of size and shape.
    Das K; Uppal A; Saini RK; Varshney GK; Mondal P; Gupta PK
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():398-402. PubMed ID: 24682054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ template synthesis of gold nanoparticles using a bis-imidazolium amphiphile-based hydrogel.
    Rodrigues M; Genç A; Arbiol J; Amabilino DB; Pérez-García L
    J Colloid Interface Sci; 2015 May; 446():53-8. PubMed ID: 25656559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA bimodified gold nanoparticles.
    Zhang T; Dong Y; Sun Y; Chen P; Yang Y; Zhou C; Xu L; Yang Z; Liu D
    Langmuir; 2012 Jan; 28(4):1966-70. PubMed ID: 21995619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Completely dispersible PEGylated gold nanoparticles under physiological conditions: modification of gold nanoparticles with precisely controlled PEG-b-polyamine.
    Miyamoto D; Oishi M; Kojima K; Yoshimoto K; Nagasaki Y
    Langmuir; 2008 May; 24(9):5010-7. PubMed ID: 18386943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size sorting of citrate reduced gold nanoparticles by sedimentation field-flow fractionation.
    Contado C; Argazzi R
    J Chromatogr A; 2009 Dec; 1216(52):9088-98. PubMed ID: 19717161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of gold nanoparticles with free radicals and their role in enhancing the scavenging activity of ascorbic acid.
    Razzaq H; Saira F; Yaqub A; Qureshi R; Mumtaz M; Saleemi S
    J Photochem Photobiol B; 2016 Aug; 161():266-72. PubMed ID: 27288656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-pot synthesis of gold nanorods by ultrasonic irradiation: the effect of pH on the shape of the gold nanorods and nanoparticles.
    Okitsu K; Sharyo K; Nishimura R
    Langmuir; 2009 Jul; 25(14):7786-90. PubMed ID: 19545140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Establishment of a trimodality analytical platform for tracing, imaging and quantification of gold nanoparticles in animals by radiotracer techniques.
    Chen CH; Lin FS; Liao WN; Liang SL; Chen MH; Chen YW; Lin WY; Hsu MH; Wang MY; Peir JJ; Chou FI; Chen CY; Chen SY; Huang SC; Yang MH; Hueng DY; Hwu Y; Yang CS; Chen JK
    Anal Chem; 2015 Jan; 87(1):601-8. PubMed ID: 25424326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of gold nanoparticle size on acoustic cavitation using chemical dosimetry method.
    Shanei A; Shanei MM
    Ultrason Sonochem; 2017 Jan; 34():45-50. PubMed ID: 27773268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid in situ biosynthesis of gold nanoparticles in living platelets for multimodal biomedical imaging.
    Jin J; Liu T; Li M; Yuan C; Liu Y; Tang J; Feng Z; Zhou Y; Yang F; Gu N
    Colloids Surf B Biointerfaces; 2018 Mar; 163():385-393. PubMed ID: 29366981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of ultrasonic irradiation power on sonochemical synthesis of gold nanoparticles.
    Fuentes-García JA; Santoyo-Salzar J; Rangel-Cortes E; Goya GF; Cardozo-Mata V; Pescador-Rojas JA
    Ultrason Sonochem; 2021 Jan; 70():105274. PubMed ID: 32771910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controllable synthesis and SERS characteristics of hollow sea-urchin gold nanoparticles.
    Li J; Zhou J; Jiang T; Wang B; Gu M; Petti L; Mormile P
    Phys Chem Chem Phys; 2014 Dec; 16(46):25601-8. PubMed ID: 25352224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The interaction between casein micelles and gold nanoparticles.
    Liu Y; Guo R
    J Colloid Interface Sci; 2009 Apr; 332(1):265-9. PubMed ID: 19131073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.