These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
73 related articles for article (PubMed ID: 2559913)
21. Surface expression of ferripyochelin-binding protein is required for virulence of Pseudomonas aeruginosa. Sokol PA Infect Immun; 1987 Sep; 55(9):2021-5. PubMed ID: 3114141 [TBL] [Abstract][Full Text] [Related]
22. Antimicrobial activity and interference of tobramycin and chloramphenicol on bacterial adhesion to intraocular lenses. Drago L; De Vecchi E; Nicola L; Gismondo MR Drugs Exp Clin Res; 2003; 29(1):25-35. PubMed ID: 12866361 [TBL] [Abstract][Full Text] [Related]
23. Mutation in pvcABCD operon of Pseudomonas aeruginosa modulates MexEF-OprN efflux system and hence resistance to chloramphenicol and ciprofloxacin. Iftikhar A; Asif A; Manzoor A; Azeem M; Sarwar G; Rashid N; Qaisar U Microb Pathog; 2020 Dec; 149():104491. PubMed ID: 32941967 [TBL] [Abstract][Full Text] [Related]
24. Polymyxin Susceptibility in Pseudomonas aeruginosa Linked to the MexXY-OprM Multidrug Efflux System. Poole K; Lau CH; Gilmour C; Hao Y; Lam JS Antimicrob Agents Chemother; 2015 Dec; 59(12):7276-89. PubMed ID: 26369970 [TBL] [Abstract][Full Text] [Related]
25. Method for regulated expression of single-copy efflux pump genes in a surrogate Pseudomonas aeruginosa strain: identification of the BpeEF-OprC chloramphenicol and trimethoprim efflux pump of Burkholderia pseudomallei 1026b. Kumar A; Chua KL; Schweizer HP Antimicrob Agents Chemother; 2006 Oct; 50(10):3460-3. PubMed ID: 17005832 [TBL] [Abstract][Full Text] [Related]
26. Cloning and sequence analysis of a gene (pchR) encoding an AraC family activator of pyochelin and ferripyochelin receptor synthesis in Pseudomonas aeruginosa. Heinrichs DE; Poole K J Bacteriol; 1993 Sep; 175(18):5882-9. PubMed ID: 8397186 [TBL] [Abstract][Full Text] [Related]
27. Characterization of a novel gene related to antibiotic susceptibility in Pseudomonas aeruginosa. Shen L; Ma Y; Liang H J Antibiot (Tokyo); 2012 Feb; 65(2):59-65. PubMed ID: 22146126 [TBL] [Abstract][Full Text] [Related]
28. Monoclonal antibody to an aminoglycoside-resistance factor from Pseudomonas aeruginosa. Norris SA; Sciortino CV J Infect Dis; 1988 Dec; 158(6):1324-8. PubMed ID: 3143766 [TBL] [Abstract][Full Text] [Related]
29. Uptake of BRL 41897A, a C(7) alpha-formamido substituted cephalosporin, via the ferri-pyochelin transport system of Pseudomonas aeruginosa. Gensberg K; Doyle EJ; Perry DJ; Smith AW J Antimicrob Chemother; 1994 Nov; 34(5):697-705. PubMed ID: 7706165 [TBL] [Abstract][Full Text] [Related]
30. Two mechanisms of killing of Pseudomonas aeruginosa by tobramycin assessed at multiple inocula via mechanism-based modeling. Bulitta JB; Ly NS; Landersdorfer CB; Wanigaratne NA; Velkov T; Yadav R; Oliver A; Martin L; Shin BS; Forrest A; Tsuji BT Antimicrob Agents Chemother; 2015 Apr; 59(4):2315-27. PubMed ID: 25645838 [TBL] [Abstract][Full Text] [Related]
31. Clinically relevant concentrations of fosfomycin combined with polymyxin B, tobramycin or ciprofloxacin enhance bacterial killing of Pseudomonas aeruginosa, but do not suppress the emergence of fosfomycin resistance. Walsh CC; Landersdorfer CB; McIntosh MP; Peleg AY; Hirsch EB; Kirkpatrick CM; Bergen PJ J Antimicrob Chemother; 2016 Aug; 71(8):2218-29. PubMed ID: 27118778 [TBL] [Abstract][Full Text] [Related]
32. Factors influencing the accumulation of ciprofloxacin in Pseudomonas aeruginosa. Celesk RA; Robillard NJ Antimicrob Agents Chemother; 1989 Nov; 33(11):1921-6. PubMed ID: 2514623 [TBL] [Abstract][Full Text] [Related]
33. MexXY-OprM efflux pump is required for antagonism of aminoglycosides by divalent cations in Pseudomonas aeruginosa. Mao W; Warren MS; Lee A; Mistry A; Lomovskaya O Antimicrob Agents Chemother; 2001 Jul; 45(7):2001-7. PubMed ID: 11408215 [TBL] [Abstract][Full Text] [Related]
34. Ciprofloxacin binding to GyrA causes global changes in the proteome of Pseudomonas aeruginosa. Jedrey H; Lilley KS; Welch M FEMS Microbiol Lett; 2018 Jul; 365(13):. PubMed ID: 29846552 [TBL] [Abstract][Full Text] [Related]
35. Dynamics of Mutations during Development of Resistance by Pseudomonas aeruginosa against Five Antibiotics. Feng Y; Jonker MJ; Moustakas I; Brul S; Ter Kuile BH Antimicrob Agents Chemother; 2016 Jul; 60(7):4229-36. PubMed ID: 27139485 [TBL] [Abstract][Full Text] [Related]
36. Pyochelin-mediated iron transport in Pseudomonas aeruginosa: involvement of a high-molecular-mass outer membrane protein. Heinrichs DE; Young L; Poole K Infect Immun; 1991 Oct; 59(10):3680-4. PubMed ID: 1910015 [TBL] [Abstract][Full Text] [Related]
37. Proteomic analysis of the sarcosine-insoluble outer membrane fraction of Pseudomonas aeruginosa responding to ampicilin, kanamycin, and tetracycline resistance. Peng X; Xu C; Ren H; Lin X; Wu L; Wang S J Proteome Res; 2005; 4(6):2257-65. PubMed ID: 16335974 [TBL] [Abstract][Full Text] [Related]
38. Synergistic activity of sub-inhibitory concentrations of curcumin with ceftazidime and ciprofloxacin against Pseudomonas aeruginosa quorum sensing related genes and virulence traits. Roudashti S; Zeighami H; Mirshahabi H; Bahari S; Soltani A; Haghi F World J Microbiol Biotechnol; 2017 Mar; 33(3):50. PubMed ID: 28188589 [TBL] [Abstract][Full Text] [Related]
39. [Combined application of ciprofloxacin and tobramycin on mutant selective windows of ciprofloxacin against Pseudomonas aeruginosa]. Liu MT; Sheng MY; Zhang Y; Li Y Zhonghua Yi Xue Za Zhi; 2011 May; 91(20):1427-31. PubMed ID: 21756818 [TBL] [Abstract][Full Text] [Related]
40. Mutational analysis of the OprM outer membrane component of the MexA-MexB-OprM multidrug efflux system of Pseudomonas aeruginosa. Li XZ; Poole K J Bacteriol; 2001 Jan; 183(1):12-27. PubMed ID: 11114896 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]