BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

690 related articles for article (PubMed ID: 25599175)

  • 1. Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors.
    Wang X; Wang Y; Wu X; Wang J; Wang Y; Qiu Z; Chang T; Huang H; Lin RJ; Yee JK
    Nat Biotechnol; 2015 Feb; 33(2):175-8. PubMed ID: 25599175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of CRISPR/Cas9-Generated Off-Target Effect by Integration-Defective Lentiviral Vector.
    Wang X; Wu Y; Yee JK
    Methods Mol Biol; 2021; 2162():243-260. PubMed ID: 32926387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Protocol for the Production of Integrase-deficient Lentiviral Vectors for CRISPR/Cas9-mediated Gene Knockout in Dividing Cells.
    Vijayraghavan S; Kantor B
    J Vis Exp; 2017 Dec; (130):. PubMed ID: 29286484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic analysis of CRISPR-Cas9 mismatch tolerance reveals low levels of off-target activity.
    Anderson EM; Haupt A; Schiel JA; Chou E; Machado HB; Strezoska Ž; Lenger S; McClelland S; Birmingham A; Vermeulen A; Smith Av
    J Biotechnol; 2015 Oct; 211():56-65. PubMed ID: 26189696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9-Mediated Genome Editing in Soybean Hairy Roots.
    Cai Y; Chen L; Liu X; Sun S; Wu C; Jiang B; Han T; Hou W
    PLoS One; 2015; 10(8):e0136064. PubMed ID: 26284791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delivering Cas9/sgRNA ribonucleoprotein (RNP) by lentiviral capsid-based bionanoparticles for efficient 'hit-and-run' genome editing.
    Lyu P; Javidi-Parsijani P; Atala A; Lu B
    Nucleic Acids Res; 2019 Sep; 47(17):e99. PubMed ID: 31299082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lentiviral Vectors for Delivery of Gene-Editing Systems Based on CRISPR/Cas: Current State and Perspectives.
    Dong W; Kantor B
    Viruses; 2021 Jul; 13(7):. PubMed ID: 34372494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation.
    Zhang H; Zhang J; Wei P; Zhang B; Gou F; Feng Z; Mao Y; Yang L; Zhang H; Xu N; Zhu JK
    Plant Biotechnol J; 2014 Aug; 12(6):797-807. PubMed ID: 24854982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biased and Unbiased Methods for the Detection of Off-Target Cleavage by CRISPR/Cas9: An Overview.
    Martin F; Sánchez-Hernández S; Gutiérrez-Guerrero A; Pinedo-Gomez J; Benabdellah K
    Int J Mol Sci; 2016 Sep; 17(9):. PubMed ID: 27618019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production and Validation of Lentiviral Vectors for CRISPR/Cas9 Delivery.
    Ryø LB; Thomsen EA; Mikkelsen JG
    Methods Mol Biol; 2019; 1961():93-109. PubMed ID: 30912042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences.
    Lin Y; Cradick TJ; Brown MT; Deshmukh H; Ranjan P; Sarode N; Wile BM; Vertino PM; Stewart FJ; Bao G
    Nucleic Acids Res; 2014 Jun; 42(11):7473-85. PubMed ID: 24838573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling cancer processes with CRISPR-Cas9.
    Lu XJ; Qi X; Zheng DH; Ji LJ
    Trends Biotechnol; 2015 Jun; 33(6):317-9. PubMed ID: 25908505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different Effects of sgRNA Length on CRISPR-mediated Gene Knockout Efficiency.
    Zhang JP; Li XL; Neises A; Chen W; Hu LP; Ji GZ; Yu JY; Xu J; Yuan WP; Cheng T; Zhang XB
    Sci Rep; 2016 Jun; 6():28566. PubMed ID: 27338021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9.
    Du H; Zeng X; Zhao M; Cui X; Wang Q; Yang H; Cheng H; Yu D
    J Biotechnol; 2016 Jan; 217():90-7. PubMed ID: 26603121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector.
    Kabadi AM; Ousterout DG; Hilton IB; Gersbach CA
    Nucleic Acids Res; 2014 Oct; 42(19):e147. PubMed ID: 25122746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted mutagenesis in soybean using the CRISPR-Cas9 system.
    Sun X; Hu Z; Chen R; Jiang Q; Song G; Zhang H; Xi Y
    Sci Rep; 2015 May; 5():10342. PubMed ID: 26022141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA.
    Richardson CD; Ray GJ; DeWitt MA; Curie GL; Corn JE
    Nat Biotechnol; 2016 Mar; 34(3):339-44. PubMed ID: 26789497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Cpf1 CRISPR-Cas protein expands genome-editing tools.
    Fagerlund RD; Staals RH; Fineran PC
    Genome Biol; 2015 Nov; 16():251. PubMed ID: 26578176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The application of CRISPR/Cas9 in genome editing of filamentous fungi.
    Li HH; Liu G
    Yi Chuan; 2017 May; 39(5):355-367. PubMed ID: 28487268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases.
    Tsai SQ; Zheng Z; Nguyen NT; Liebers M; Topkar VV; Thapar V; Wyvekens N; Khayter C; Iafrate AJ; Le LP; Aryee MJ; Joung JK
    Nat Biotechnol; 2015 Feb; 33(2):187-197. PubMed ID: 25513782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.