These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 25599529)
21. Characterization of a gene regulatory network underlying astringency loss in persimmon fruit. Nishiyama S; Onoue N; Kono A; Sato A; Yonemori K; Tao R Planta; 2018 Mar; 247(3):733-743. PubMed ID: 29188374 [TBL] [Abstract][Full Text] [Related]
22. Volatile compounds associated to the loss of astringency in 'Rama Forte' persimmon fruit. Amorim C; Alves Filho EG; Rodrigues THS; Bender RJ; Canuto KM; Garruti DS; Antoniolli LR Food Res Int; 2020 Oct; 136():109570. PubMed ID: 32846609 [TBL] [Abstract][Full Text] [Related]
23. DkMYB14 is a bifunctional transcription factor that regulates the accumulation of proanthocyanidin in persimmon fruit. Chen W; Zheng Q; Li J; Liu Y; Xu L; Zhang Q; Luo Z Plant J; 2021 Jun; 106(6):1708-1727. PubMed ID: 33835602 [TBL] [Abstract][Full Text] [Related]
24. Expressed sequence tags from persimmon at different developmental stages. Nakagawa T; Nakatsuka A; Yano K; Yasugahira S; Nakamura R; Sun N; Itai A; Suzuki T; Itamura H Plant Cell Rep; 2008 May; 27(5):931-8. PubMed ID: 18301901 [TBL] [Abstract][Full Text] [Related]
25. Transcriptomic profiling analysis to identify genes associated with PA biosynthesis and insolubilization in the late stage of fruit development in C-PCNA persimmon. Wang Y; Zhang Q; Pu T; Suo Y; Han W; Diao S; Li H; Sun P; Fu J Sci Rep; 2022 Nov; 12(1):19140. PubMed ID: 36352175 [TBL] [Abstract][Full Text] [Related]
26. Isolation and characterization of a laccase gene potentially involved in proanthocyanidin polymerization in Oriental persimmon (Diospyros kaki Thunb.) fruit. Hu Q; Luo C; Zhang Q; Luo Z Mol Biol Rep; 2013 Apr; 40(4):2809-20. PubMed ID: 23224657 [TBL] [Abstract][Full Text] [Related]
27. Genome-wide transcriptome analysis of Chinese pollination-constant nonastringent persimmon fruit treated with ethanol. Luo C; Zhang Q; Luo Z BMC Genomics; 2014 Feb; 15():112. PubMed ID: 24507483 [TBL] [Abstract][Full Text] [Related]
28. Comparative Metabolomic and Transcriptomic Analyses Reveal Distinct Ascorbic Acid (AsA) Accumulation Patterns between PCA and PCNA Persimmon Developing Fruit. Wang Y; Diao S; Li H; Ye L; Suo Y; Zheng Y; Sun P; Han W; Fu J Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37895041 [TBL] [Abstract][Full Text] [Related]
31. High CO2/hypoxia-induced softening of persimmon fruit is modulated by DkERF8/16 and DkNAC9 complexes. Wu W; Wang MM; Gong H; Liu XF; Guo DL; Sun NJ; Huang JW; Zhu QG; Chen KS; Yin XR J Exp Bot; 2020 May; 71(9):2690-2700. PubMed ID: 31926021 [TBL] [Abstract][Full Text] [Related]
32. Analysis of xyloglucan endotransglycosylase/hydrolase (XTH) genes and diverse roles of isoenzymes during persimmon fruit development and postharvest softening. Han Y; Zhu Q; Zhang Z; Meng K; Hou Y; Ban Q; Suo J; Rao J PLoS One; 2015; 10(4):e0123668. PubMed ID: 25849978 [TBL] [Abstract][Full Text] [Related]
33. Transcription factors DkBZR1/2 regulate cell wall degradation genes and ethylene biosynthesis genes during persimmon fruit ripening. He Y; Liu H; Li H; Jin M; Wang X; Yin X; Zhu Q; Rao J J Exp Bot; 2021 Sep; 72(18):6437-6446. PubMed ID: 34185065 [TBL] [Abstract][Full Text] [Related]
34. Effects of seasonal temperature changes on DkMyb4 expression involved in proanthocyanidin regulation in two genotypes of persimmon (Diospyros kaki Thunb.) fruit. Akagi T; Tsujimoto T; Ikegami A; Yonemori K Planta; 2011 May; 233(5):883-94. PubMed ID: 21225280 [TBL] [Abstract][Full Text] [Related]
35. Cytological and Transcriptome Analyses Provide Insights into Persimmon Fruit Size Formation ( Li H; Suo Y; Li H; Sun P; Li S; Yuan D; Han W; Fu J Int J Mol Sci; 2024 Jun; 25(13):. PubMed ID: 39000347 [TBL] [Abstract][Full Text] [Related]
36. Comparative transcriptome analysis reveals the mechanism involving ethylene and cell wall modification related genes in Diospyros kaki fruit firmness during ripening. Kou J; Zhao Z; Zhang Q; Wei C; Ference CM; Guan J; Wang W Genomics; 2021 Mar; 113(2):552-563. PubMed ID: 33460734 [TBL] [Abstract][Full Text] [Related]
37. Isolation and Characterization of DkPK Genes Associated with Natural Deastringency in C-PCNA Persimmon. Guan C; Chen W; Mo R; Du X; Zhang Q; Luo Z Front Plant Sci; 2016; 7():156. PubMed ID: 26925075 [TBL] [Abstract][Full Text] [Related]
38. Cytological, Phytohormone, and Transcriptome Analyses Provide Insights into Persimmon Fruit Shape Formation ( Li H; Suo Y; Li H; Sun P; Han W; Fu J Int J Mol Sci; 2024 Apr; 25(9):. PubMed ID: 38732032 [TBL] [Abstract][Full Text] [Related]
39. Expression balances of structural genes in shikimate and flavonoid biosynthesis cause a difference in proanthocyanidin accumulation in persimmon (Diospyros kaki Thunb.) fruit. Akagi T; Ikegami A; Suzuki Y; Yoshida J; Yamada M; Sato A; Yonemori K Planta; 2009 Oct; 230(5):899-915. PubMed ID: 19669159 [TBL] [Abstract][Full Text] [Related]
40. Transcriptome and Metabolome Reveal Distinct Sugar Accumulation Pattern between PCNA and PCA Mature Persimmon Fruit. Han W; Wang Y; Li H; Diao S; Suo Y; Li T; Sun P; Li F; Fu J Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37239943 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]