BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 25599667)

  • 1. Stranded Whole Transcriptome RNA-Seq for All RNA Types.
    Miller DFB; Yan PX; Fang F; Buechlein A; Ford JB; Tang H; Huang TH; Burow ME; Liu Y; Rusch DB; Nephew KP
    Curr Protoc Hum Genet; 2015 Jan; 84():11.14.1-11.14.23. PubMed ID: 25599667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new method for stranded whole transcriptome RNA-seq.
    Miller DF; Yan PS; Buechlein A; Rodriguez BA; Yilmaz AS; Goel S; Lin H; Collins-Burow B; Rhodes LV; Braun C; Pradeep S; Rupaimoole R; Dalkilic M; Sood AK; Burow ME; Tang H; Huang TH; Liu Y; Rusch DB; Nephew KP
    Methods; 2013 Sep; 63(2):126-34. PubMed ID: 23557989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complete Transcriptome RNA-Seq.
    Miller DF; Yan P; Fang F; Buechlein A; Kroll K; Frankhouser D; Stump C; Stump P; Ford JB; Tang H; Michaels S; Matei D; Huang TH; Chien J; Liu Y; Rusch DB; Nephew KP
    Methods Mol Biol; 2017; 1513():141-162. PubMed ID: 27807835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strand-Specific Transcriptome Sequencing Using SMART Technology.
    Bostick M; Bolduc N; Lehman A; Farmer A
    Curr Protoc Mol Biol; 2016 Oct; 116():4.27.1-4.27.18. PubMed ID: 27723087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small RNA library construction for high-throughput sequencing.
    McGinn J; Czech B
    Methods Mol Biol; 2014; 1093():195-208. PubMed ID: 24178567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. tsRFun: a comprehensive platform for decoding human tsRNA expression, functions and prognostic value by high-throughput small RNA-Seq and CLIP-Seq data.
    Wang JH; Chen WX; Mei SQ; Yang YD; Yang JH; Qu LH; Zheng LL
    Nucleic Acids Res; 2022 Jan; 50(D1):D421-D431. PubMed ID: 34755848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of RNA-Seq libraries from large and microscopic tissues for the Illumina sequencing platform.
    Atamian HS; Kaloshian I
    Methods Mol Biol; 2012; 883():47-57. PubMed ID: 22589123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic single-cell whole-transcriptome sequencing.
    Streets AM; Zhang X; Cao C; Pang Y; Wu X; Xiong L; Yang L; Fu Y; Zhao L; Tang F; Huang Y
    Proc Natl Acad Sci U S A; 2014 May; 111(19):7048-53. PubMed ID: 24782542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA Fragmentation and Sequencing (RF-Seq): Cost-Effective, Time-Efficient, and High-Throughput 3' mRNA Sequencing Library Construction in a Single Tube.
    Veeranagouda Y; Remaury A; Guillemot JC; Didier M
    Curr Protoc Mol Biol; 2019 Dec; 129(1):e109. PubMed ID: 31763778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Next-generation sequencing applied to flower development: RNA-seq.
    He J; Jiao Y
    Methods Mol Biol; 2014; 1110():401-11. PubMed ID: 24395272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational analysis, biochemical purification, and detection of tRNA-derived small RNA fragments.
    Keam SP; Sobala A; Humphreys DT; Suter CM; Hutvagner G
    Methods Mol Biol; 2014; 1173():157-67. PubMed ID: 24920368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The discovery potential of RNA processing profiles.
    Pagès A; Dotu I; Pallarès-Albanell J; Martí E; Guigó R; Eyras E
    Nucleic Acids Res; 2018 Feb; 46(3):e15. PubMed ID: 29155959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Next-generation sequencing reveals novel differentially regulated mRNAs, lncRNAs, miRNAs, sdRNAs and a piRNA in pancreatic cancer.
    Müller S; Raulefs S; Bruns P; Afonso-Grunz F; Plötner A; Thermann R; Jäger C; Schlitter AM; Kong B; Regel I; Roth WK; Rotter B; Hoffmeier K; Kahl G; Koch I; Theis FJ; Kleeff J; Winter P; Michalski CW
    Mol Cancer; 2015 Apr; 14():94. PubMed ID: 25910082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-coding RNA profiling of the developing murine lens.
    Khan SY; Hackett SF; Riazuddin SA
    Exp Eye Res; 2016 Apr; 145():347-351. PubMed ID: 26808486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seq-Well: A Sample-Efficient, Portable Picowell Platform for Massively Parallel Single-Cell RNA Sequencing.
    Aicher TP; Carroll S; Raddi G; Gierahn T; Wadsworth MH; Hughes TK; Love C; Shalek AK
    Methods Mol Biol; 2019; 1979():111-132. PubMed ID: 31028635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome Analysis at the Single-Cell Level Using SMART Technology.
    Fish RN; Bostick M; Lehman A; Farmer A
    Curr Protoc Mol Biol; 2016 Oct; 116():4.26.1-4.26.24. PubMed ID: 27723086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Cell mRNA-Seq Using the Fluidigm C1 System and Integrated Fluidics Circuits.
    Gong H; Do D; Ramakrishnan R
    Methods Mol Biol; 2018; 1783():193-207. PubMed ID: 29767364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A High-Efficiency Capture-Based NGS Approach for Comprehensive Analysis of Mitochondrial Transcriptome.
    Wang Z; Zhou K; Yuan Q; Chen D; Hu X; Xie F; Liu Y; Xing J
    Anal Chem; 2023 Nov; 95(46):17046-17053. PubMed ID: 37937716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small RNA Profiling by Next-Generation Sequencing Using High-Definition Adapters.
    Billmeier M; Xu P
    Methods Mol Biol; 2017; 1580():45-57. PubMed ID: 28439825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA-Seq: revelation of the messengers.
    Van Verk MC; Hickman R; Pieterse CM; Van Wees SC
    Trends Plant Sci; 2013 Apr; 18(4):175-9. PubMed ID: 23481128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.