These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 2559972)
1. Transient and persistent sodium currents in normal and denervated mammalian skeletal muscle. Gage PW; Lamb GD; Wakefield BT J Physiol; 1989 Nov; 418():427-39. PubMed ID: 2559972 [TBL] [Abstract][Full Text] [Related]
2. Calcium current activation and charge movement in denervated mammalian skeletal muscle fibres. Delbono O J Physiol; 1992; 451():187-203. PubMed ID: 1328616 [TBL] [Abstract][Full Text] [Related]
3. Voltage-clamp experiments in normal and denervated mammalian skeletal muscle fibres. Pappone PA J Physiol; 1980 Sep; 306():377-410. PubMed ID: 6257898 [TBL] [Abstract][Full Text] [Related]
4. A voltage-dependent persistent sodium current in mammalian hippocampal neurons. French CR; Sah P; Buckett KJ; Gage PW J Gen Physiol; 1990 Jun; 95(6):1139-57. PubMed ID: 2374000 [TBL] [Abstract][Full Text] [Related]
5. Excitation-contraction coupling and charge movement in denervated rat extensor digitorum longus and soleus muscles. Dulhunty AF; Gage PW J Physiol; 1985 Jan; 358():75-89. PubMed ID: 3981474 [TBL] [Abstract][Full Text] [Related]
6. Calcium current inactivation in denervated rat skeletal muscle fibres. Delbono O; Stefani E J Physiol; 1993 Jan; 460():173-83. PubMed ID: 8387584 [TBL] [Abstract][Full Text] [Related]
7. Characteristics of action potentials and their underlying outward currents in rat taste receptor cells. Chen Y; Sun XD; Herness S J Neurophysiol; 1996 Feb; 75(2):820-31. PubMed ID: 8714655 [TBL] [Abstract][Full Text] [Related]
8. Asymmetric charge movement and calcium currents in ventricular myocytes of neonatal rat. Field AC; Hill C; Lamb GD J Physiol; 1988 Dec; 406():277-97. PubMed ID: 2855436 [TBL] [Abstract][Full Text] [Related]
10. Intramembrane charge movement in frog skeletal muscle fibres. Properties of charge 2. Brum G; Rios E J Physiol; 1987 Jun; 387():489-517. PubMed ID: 3116215 [TBL] [Abstract][Full Text] [Related]
11. Sodium and calcium currents in acutely dissociated neurons from rat suprachiasmatic nucleus. Huang RC J Neurophysiol; 1993 Oct; 70(4):1692-703. PubMed ID: 7904302 [TBL] [Abstract][Full Text] [Related]
12. Membrane charge movement in contracting and non-contracting skeletal muscle fibres. Horowicz P; Schneider MF J Physiol; 1981 May; 314():565-93. PubMed ID: 6975814 [TBL] [Abstract][Full Text] [Related]
13. Ionic currents in slow twitch skeletal muscle in the rat. Duval A; Léoty C J Physiol; 1980 Oct; 307():23-41. PubMed ID: 7205665 [TBL] [Abstract][Full Text] [Related]
14. A persistent sodium current in rat ventricular myocytes. Saint DA; Ju YK; Gage PW J Physiol; 1992; 453():219-31. PubMed ID: 1334512 [TBL] [Abstract][Full Text] [Related]
15. Ca2+ current and charge movement in adult single human skeletal muscle fibres. García J; McKinley K; Appel SH; Stefani E J Physiol; 1992 Aug; 454():183-96. PubMed ID: 1335500 [TBL] [Abstract][Full Text] [Related]
16. Sodium currents and sodium-current fluctuations in rat myelinated nerve fibres. Neumcke B; Stämpfli R J Physiol; 1982 Aug; 329():163-84. PubMed ID: 6292404 [TBL] [Abstract][Full Text] [Related]
17. Ionic conductances in frog short skeletal muscle fibres with slow delayed rectifier currents. Lynch C J Physiol; 1985 Nov; 368():359-78. PubMed ID: 2416916 [TBL] [Abstract][Full Text] [Related]
18. Changes in Na channel properties of frog and rat skeletal muscles induced by the AaH II toxin from the scorpion Androctonus australis. Duval A; Malécot CO; Pelhate M; Rochat H Pflugers Arch; 1989 Dec; 415(3):361-71. PubMed ID: 2560170 [TBL] [Abstract][Full Text] [Related]
19. Properties of persistent sodium conductance and calcium conductance of layer V neurons from cat sensorimotor cortex in vitro. Stafstrom CE; Schwindt PC; Chubb MC; Crill WE J Neurophysiol; 1985 Jan; 53(1):153-70. PubMed ID: 2579215 [TBL] [Abstract][Full Text] [Related]
20. Voltage-clamp analysis of the early current in frog skeletal muscle fibre using the double sucrose-gap method. Ildefonse M; Rougier O J Physiol; 1972 Apr; 222(2):373-95. PubMed ID: 4537514 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]