These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 25599856)

  • 1. Synthetic tumor networks for screening drug delivery systems.
    Prabhakarpandian B; Shen MC; Nichols JB; Garson CJ; Mills IR; Matar MM; Fewell JG; Pant K
    J Control Release; 2015 Mar; 201():49-55. PubMed ID: 25599856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Biomimetic Microfluidic Tumor Microenvironment Platform Mimicking the EPR Effect for Rapid Screening of Drug Delivery Systems.
    Tang Y; Soroush F; Sheffield JB; Wang B; Prabhakarpandian B; Kiani MF
    Sci Rep; 2017 Aug; 7(1):9359. PubMed ID: 28839211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vascularized microfluidic platforms to mimic the tumor microenvironment.
    Michna R; Gadde M; Ozkan A; DeWitt M; Rylander M
    Biotechnol Bioeng; 2018 Nov; 115(11):2793-2806. PubMed ID: 29940072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of complex transport of nanoparticles around a tumor using tumor-microenvironment-on-chip.
    Kwak B; Ozcelikkale A; Shin CS; Park K; Han B
    J Control Release; 2014 Nov; 194():157-67. PubMed ID: 25194778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro microfluidic models of tumor microenvironment to screen transport of drugs and nanoparticles.
    Ozcelikkale A; Moon HR; Linnes M; Han B
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2017 Sep; 9(5):. PubMed ID: 28198106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the uptake of methacrylate-based nanoparticles in static and dynamic in vitro systems as well as in vivo.
    Rinkenauer AC; Press AT; Raasch M; Pietsch C; Schweizer S; Schwörer S; Rudolph KL; Mosig A; Bauer M; Traeger A; Schubert US
    J Control Release; 2015 Oct; 216():158-68. PubMed ID: 26277064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving drug delivery to solid tumors: priming the tumor microenvironment.
    Khawar IA; Kim JH; Kuh HJ
    J Control Release; 2015 Mar; 201():78-89. PubMed ID: 25526702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable Collagen Microfluidic Platform to Study Nanoparticle Transport in the Tumor Microenvironment.
    DeWitt MR; Rylander MN
    Methods Mol Biol; 2018; 1831():159-178. PubMed ID: 30051431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticles for modulating tumor microenvironment to improve drug delivery and tumor therapy.
    Yang S; Gao H
    Pharmacol Res; 2017 Dec; 126():97-108. PubMed ID: 28501517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A tumor microenvironment model coupled with a mass spectrometry system to probe the metabolism of drug-loaded nanoparticles.
    Lin L; Zheng Y; Wu Z; Zhang W; Lin JM
    Chem Commun (Camb); 2019 Aug; 55(69):10218-10221. PubMed ID: 31364634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Acid-Triggered Degradable and Fluorescent Nanoscale Drug Delivery System with Enhanced Cytotoxicity to Cancer Cells.
    An J; Dai X; Wu Z; Zhao Y; Lu Z; Guo Q; Zhang X; Li C
    Biomacromolecules; 2015 Aug; 16(8):2444-54. PubMed ID: 26213802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical modeling of drug delivery in a dynamic solid tumor microvasculature.
    Sefidgar M; Soltani M; Raahemifar K; Sadeghi M; Bazmara H; Bazargan M; Mousavi Naeenian M
    Microvasc Res; 2015 May; 99():43-56. PubMed ID: 25724978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumor-Microenvironment-on-a-Chip for Evaluating Nanoparticle-Loaded Macrophages for Drug Delivery.
    Wang HF; Liu Y; Wang T; Yang G; Zeng B; Zhao CX
    ACS Biomater Sci Eng; 2020 Sep; 6(9):5040-5050. PubMed ID: 33455297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor-targeting and microenvironment-responsive smart nanoparticles for combination therapy of antiangiogenesis and apoptosis.
    Huang S; Shao K; Liu Y; Kuang Y; Li J; An S; Guo Y; Ma H; Jiang C
    ACS Nano; 2013 Mar; 7(3):2860-71. PubMed ID: 23451830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery.
    Danhier F; Feron O; Préat V
    J Control Release; 2010 Dec; 148(2):135-46. PubMed ID: 20797419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation, characterization and transfection efficiency of cationic PEGylated PLA nanoparticles as gene delivery systems.
    Chen J; Tian B; Yin X; Zhang Y; Hu D; Hu Z; Liu M; Pan Y; Zhao J; Li H; Hou C; Wang J; Zhang Y
    J Biotechnol; 2007 Jun; 130(2):107-13. PubMed ID: 17467097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multicellular tumor spheroids as an in vivo-like tumor model for three-dimensional imaging of chemotherapeutic and nano material cellular penetration.
    Ma HL; Jiang Q; Han S; Wu Y; Cui Tomshine J; Wang D; Gan Y; Zou G; Liang XJ
    Mol Imaging; 2012; 11(6):487-98. PubMed ID: 23084249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delivery of molecular and nanoscale medicine to tumors: transport barriers and strategies.
    Chauhan VP; Stylianopoulos T; Boucher Y; Jain RK
    Annu Rev Chem Biomol Eng; 2011; 2():281-98. PubMed ID: 22432620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced antitumor efficacy by d-glucosamine-functionalized and paclitaxel-loaded poly(ethylene glycol)-co-poly(trimethylene carbonate) polymer nanoparticles.
    Jiang X; Xin H; Gu J; Du F; Feng C; Xie Y; Fang X
    J Pharm Sci; 2014 May; 103(5):1487-96. PubMed ID: 24619482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving delivery of antineoplastic agents with anti-vascular endothelial growth factor therapy.
    Yang AD; Bauer TW; Camp ER; Somcio R; Liu W; Fan F; Ellis LM
    Cancer; 2005 Apr; 103(8):1561-70. PubMed ID: 15754332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.