These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 25600002)

  • 1. Probing the limits of gate-based charge sensing.
    Gonzalez-Zalba MF; Barraud S; Ferguson AJ; Betz AC
    Nat Commun; 2015 Jan; 6():6084. PubMed ID: 25600002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dispersively Detected Pauli Spin-Blockade in a Silicon Nanowire Field-Effect Transistor.
    Betz AC; Wacquez R; Vinet M; Jehl X; Saraiva AL; Sanquer M; Ferguson AJ; Gonzalez-Zalba MF
    Nano Lett; 2015 Jul; 15(7):4622-7. PubMed ID: 26047255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast Charge Sensing of Si/SiGe Quantum Dots via a High-Frequency Accumulation Gate.
    Volk C; Chatterjee A; Ansaloni F; Marcus CM; Kuemmeth F
    Nano Lett; 2019 Aug; 19(8):5628-5633. PubMed ID: 31339321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dispersive readout of a few-electron double quantum dot with fast RF gate sensors.
    Colless JI; Mahoney AC; Hornibrook JM; Doherty AC; Lu H; Gossard AC; Reilly DJ
    Phys Rev Lett; 2013 Jan; 110(4):046805. PubMed ID: 25166190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gate-based single-shot readout of spins in silicon.
    West A; Hensen B; Jouan A; Tanttu T; Yang CH; Rossi A; Gonzalez-Zalba MF; Hudson F; Morello A; Reilly DJ; Dzurak AS
    Nat Nanotechnol; 2019 May; 14(5):437-441. PubMed ID: 30858520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gate-reflectometry dispersive readout and coherent control of a spin qubit in silicon.
    Crippa A; Ezzouch R; Aprá A; Amisse A; Laviéville R; Hutin L; Bertrand B; Vinet M; Urdampilleta M; Meunier T; Sanquer M; Jehl X; Maurand R; De Franceschi S
    Nat Commun; 2019 Jul; 10(1):2776. PubMed ID: 31270319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gate-Sensing Coherent Charge Oscillations in a Silicon Field-Effect Transistor.
    Gonzalez-Zalba MF; Shevchenko SN; Barraud S; Johansson JR; Ferguson AJ; Nori F; Betz AC
    Nano Lett; 2016 Mar; 16(3):1614-9. PubMed ID: 26866446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid gate-based spin read-out in silicon using an on-chip resonator.
    Zheng G; Samkharadze N; Noordam ML; Kalhor N; Brousse D; Sammak A; Scappucci G; Vandersypen LMK
    Nat Nanotechnol; 2019 Aug; 14(8):742-746. PubMed ID: 31285611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploiting a Single-Crystal Environment to Minimize the Charge Noise on Qubits in Silicon.
    Kranz L; Gorman SK; Thorgrimsson B; He Y; Keith D; Keizer JG; Simmons MY
    Adv Mater; 2020 Oct; 32(40):e2003361. PubMed ID: 32830388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. All-Microwave Control and Dispersive Readout of Gate-Defined Quantum Dot Qubits in Circuit Quantum Electrodynamics.
    Scarlino P; van Woerkom DJ; Stockklauser A; Koski JV; Collodo MC; Gasparinetti S; Reichl C; Wegscheider W; Ihn T; Ensslin K; Wallraff A
    Phys Rev Lett; 2019 May; 122(20):206802. PubMed ID: 31172788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast Gate-Based Readout of Silicon Quantum Dots Using Josephson Parametric Amplification.
    Schaal S; Ahmed I; Haigh JA; Hutin L; Bertrand B; Barraud S; Vinet M; Lee CM; Stelmashenko N; Robinson JWA; Qiu JY; Hacohen-Gourgy S; Siddiqi I; Gonzalez-Zalba MF; Morton JJL
    Phys Rev Lett; 2020 Feb; 124(6):067701. PubMed ID: 32109120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radio-Frequency-Detected Fast Charge Sensing in Undoped Silicon Quantum Dots.
    Noiri A; Takeda K; Yoneda J; Nakajima T; Kodera T; Tarucha S
    Nano Lett; 2020 Feb; 20(2):947-952. PubMed ID: 31944116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A High-Sensitivity Charge Sensor for Silicon Qubits above 1 K.
    Huang JY; Lim WH; Leon RCC; Yang CH; Hudson FE; Escott CC; Saraiva A; Dzurak AS; Laucht A
    Nano Lett; 2021 Jul; 21(14):6328-6335. PubMed ID: 33999635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge qubit entanglement via conditional single-electron transfer in an array of quantum dots.
    Tsukanov AV
    J Phys Condens Matter; 2009 Feb; 21(5):055501. PubMed ID: 21817303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Valley-based noise-resistant quantum computation using Si quantum dots.
    Culcer D; Saraiva AL; Koiller B; Hu X; Das Sarma S
    Phys Rev Lett; 2012 Mar; 108(12):126804. PubMed ID: 22540611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave-driven coherent operation of a semiconductor quantum dot charge qubit.
    Kim D; Ward DR; Simmons CB; Gamble JK; Blume-Kohout R; Nielsen E; Savage DE; Lagally MG; Friesen M; Coppersmith SN; Eriksson MA
    Nat Nanotechnol; 2015 Mar; 10(3):243-7. PubMed ID: 25686478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charge-qubit operation of an isolated double quantum dot.
    Gorman J; Hasko DG; Williams DA
    Phys Rev Lett; 2005 Aug; 95(9):090502. PubMed ID: 16197195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Demonstration of conditional gate operation using superconducting charge qubits.
    Yamamoto T; Pashkin YA; Astafiev O; Nakamura Y; Tsai JS
    Nature; 2003 Oct; 425(6961):941-4. PubMed ID: 14586464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong tunable coupling between a superconducting charge and phase qubit.
    Fay A; Hoskinson E; Lecocq F; Lévy LP; Hekking FW; Guichard W; Buisson O
    Phys Rev Lett; 2008 May; 100(18):187003. PubMed ID: 18518410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimum construction of two-qubit quantum operations.
    Zhang J; Vala J; Sastry S; Whaley KB
    Phys Rev Lett; 2004 Jul; 93(2):020502. PubMed ID: 15323888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.