These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 25600165)

  • 1. Chiral recognition of L-tryptophan with beta-cyclodextrin-modified biomimetic single nanochannel.
    Xie G; Tian W; Wen L; Xiao K; Zhang Z; Liu Q; Hou G; Li P; Tian Y; Jiang L
    Chem Commun (Camb); 2015 Feb; 51(15):3135-8. PubMed ID: 25600165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enantioselective recognition in biomimetic single artificial nanochannels.
    Han C; Hou X; Zhang H; Guo W; Li H; Jiang L
    J Am Chem Soc; 2011 May; 133(20):7644-7. PubMed ID: 21534617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nafion-stabilized black phosphorus nanosheets-maltosyl-β-cyclodextrin as a chiral sensor for tryptophan enantiomers.
    Zou J; Yu JG
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110910. PubMed ID: 32409064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature-sensitive electrochemical recognition of tryptophan enantiomers based on β-cyclodextrin self-assembled on poly(L-glutamic acid).
    Tao Y; Dai J; Kong Y; Sha Y
    Anal Chem; 2014 Mar; 86(5):2633-9. PubMed ID: 24484527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chiral Sensing of Tryptophan Enantiomers Based on the Enzyme Mimics of β-Cyclodextrin-Modified Sulfur Quantum Dots.
    Jiang W; He R; Lv H; He X; Wang L; Wei Y
    ACS Sens; 2023 Nov; 8(11):4264-4271. PubMed ID: 37997656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilization of 6-O-α-maltosyl-β-cyclodextrin on the surface of black phosphorus nanosheets for selective chiral recognition of tyrosine enantiomers.
    Zou J; Lan XW; Zhao GQ; Huang ZN; Liu YP; Yu JG
    Mikrochim Acta; 2020 Nov; 187(11):636. PubMed ID: 33141322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel N-Doped Carbon Dots/β-Cyclodextrin Nanocomposites for Enantioselective Recognition of Tryptophan Enantiomers.
    Xiao Q; Lu S; Huang C; Su W; Huang S
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27834863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heptakis(6-amino-6-deoxy)-beta-cyclodextrin as a chiral selector for the separation of anionic analyte enantiomers by capillary electrophoresis.
    Budanova N; Shapovalova E; Lopatin S; Varlamov V; Shpigun O
    Electrophoresis; 2004 Aug; 25(16):2795-800. PubMed ID: 15352011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous electrochemical recognition of tryptophan and penicillamine enantiomers based on MOF-modified β-CD.
    Hou Y; Liang J; Kuang X; Kuang R
    Carbohydr Polym; 2022 Aug; 290():119474. PubMed ID: 35550750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diastereomeric molecular recognition and binding behavior of bile acids by L/D-tryptophan-modified beta-cyclodextrins.
    Wang H; Cao R; Ke CF; Liu Y; Wada T; Inoue Y
    J Org Chem; 2005 Oct; 70(22):8703-11. PubMed ID: 16238298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enantioseparation of beta-substituted tryptophan analogues with modified cyclodextrins by capillary zone electrophoresis.
    Ilisz I; Fodor G; Berkecz R; Iványi R; Szente L; Péter A
    J Chromatogr A; 2009 Apr; 1216(15):3360-5. PubMed ID: 19215927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetylation of beta-cyclodextrin surface-functionalized cellulose dialysis membranes with enhanced chiral separation.
    Xiao Y; Lim HM; Chung TS; Rajagopalan R
    Langmuir; 2007 Dec; 23(26):12990-6. PubMed ID: 18020384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a composite chiral stationary phase from BSA and β-cyclodextrin-bonded silica.
    Yao B; Yang X; Guo L; Kang S; Weng W
    J Chromatogr Sci; 2014; 52(10):1233-8. PubMed ID: 24448668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mono-6A-(4-methoxybutylamino)-6A-β-cyclodextrin as a chiral selector for enantiomeric separation.
    Wang S; Wang Y; Zhou J; Lu Y; Tang J; Tang W
    J Sep Sci; 2014 Aug; 37(15):2056-61. PubMed ID: 24802151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular aggregates constructed from gold nanoparticles and l-try-CD polypseudorotaxanes as captors for fullerenes.
    Liu Y; Wang H; Chen Y; Ke CF; Liu M
    J Am Chem Soc; 2005 Jan; 127(2):657-66. PubMed ID: 15643890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectrophotometric and calorimetric titration studies on molecular recognition of camphor and borneol by nucleobase-modified beta-cyclodextrins.
    Liu Y; Zhang Q; Chen Y
    J Phys Chem B; 2007 Oct; 111(42):12211-8. PubMed ID: 17914791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chiral recognition by the copper(II) complex of 6-deoxy-6-N-(2-methylaminopyridine)-beta-cyclodextrin.
    Bonomo RP; Cucinotta V; D'Alessandro F; Impellizzeri G; Maccarrone G; Rizzarelli E; Vecchio G; Carima L; Corradini R; Sartor G; Marchelli R
    Chirality; 1997; 9(4):341-9. PubMed ID: 9275313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecularly imprinted polymer prepared with bonded beta-cyclodextrin and acrylamide on functionalized silica gel for selective recognition of tryptophan in aqueous media.
    Qin L; He XW; Li WY; Zhang YK
    J Chromatogr A; 2008 Apr; 1187(1-2):94-102. PubMed ID: 18294646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of the enantioselectivity and recognition mechanism of sulfhydryl-compound-functionalized gold nanochannel membranes.
    Huang L; Lin Q; Li Y; Zheng G; Chen Y
    Anal Bioanal Chem; 2019 Jan; 411(2):471-478. PubMed ID: 30450507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chiral discrimination between D- and L-tryptophan based on the alteration of the fluorescence lifetimes by the chiral additives.
    Wei Y; Wang S; Shuang S; Dong C
    Talanta; 2010 Jun; 81(4-5):1800-5. PubMed ID: 20441976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.