These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 25600239)

  • 1. Amount of organic matter required to induce sulfate reduction in sulfuric material after re-flooding is affected by soil nitrate concentration.
    Yuan C; Mosley LM; Fitzpatrick R; Marschner P
    J Environ Manage; 2015 Mar; 151():437-42. PubMed ID: 25600239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfate reduction in sulfuric material after re-flooding: Effectiveness of organic carbon addition and pH increase depends on soil properties.
    Yuan C; Fitzpatrick R; Mosley LM; Marschner P
    J Hazard Mater; 2015 Nov; 298():138-45. PubMed ID: 26024614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrate supply and sulfate-reducing suppression facilitate the removal of pentachlorophenol in a flooded mangrove soil.
    Cheng J; Xue L; Zhu M; Feng J; Shen-Tu J; Xu J; Brookes PC; Tang C; He Y
    Environ Pollut; 2019 Jan; 244():792-800. PubMed ID: 30390452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial sulfate reduction decreases arsenic mobilization in flooded paddy soils with high potential for microbial Fe reduction.
    Xu X; Wang P; Zhang J; Chen C; Wang Z; Kopittke PM; Kretzschmar R; Zhao FJ
    Environ Pollut; 2019 Aug; 251():952-960. PubMed ID: 31234262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfate reduction in poorly-drained soils as influenced by organic matter and soil texture.
    Abed MA
    Beitr Trop Landwirtsch Veterinarmed; 1976; 14(1):89-93. PubMed ID: 985306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced inorganic sulfur speciation in drain sediments from acid sulfate soil landscapes.
    Burton ED; Bush RT; Sullivan LA
    Environ Sci Technol; 2006 Feb; 40(3):888-93. PubMed ID: 16509333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ mobility of uranium in the presence of nitrate following sulfate-reducing conditions.
    Paradis CJ; Jagadamma S; Watson DB; McKay LD; Hazen TC; Park M; Istok JD
    J Contam Hydrol; 2016 Apr; 187():55-64. PubMed ID: 26897652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochar and nitrate reduce risk of methylmercury in soils under straw amendment.
    Zhang Y; Liu YR; Lei P; Wang YJ; Zhong H
    Sci Total Environ; 2018 Apr; 619-620():384-390. PubMed ID: 29156259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Achievement of Sulfate-Reducing Anaerobic Ammonium Oxidation Reactor Started with Nitrate-Reducting Anaerobic Ammonium Oxidation].
    Liu ZC; Yuan LJ; Zhou GB; Li J
    Huan Jing Ke Xue; 2015 Sep; 36(9):3345-51. PubMed ID: 26717697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Nutrient Characteristics and Nitrogen Forms of Rhizosphere Soils Under Four Typical Plants in the Littoral Zone of TGR].
    Wang XF; Yuan XZ; Liu H; Zhang L; Yu JJ; Yue JS
    Huan Jing Ke Xue; 2015 Oct; 36(10):3662-73. PubMed ID: 26841597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of nitrate transport parameters using the advection-diffusion cell.
    Aljazzar T; Al-Qinna M
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):23145-23157. PubMed ID: 27591887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrate removal from eutrophic wetlands polluted by metal-mine wastes: effects of liming and plant growth.
    González-Alcaraz MN; Conesa HM; Álvarez-Rogel J
    J Environ Manage; 2013 Oct; 128():964-72. PubMed ID: 23892281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox changes in speciation and solubility of arsenic in paddy soils as affected by sulfur concentrations.
    Hashimoto Y; Kanke Y
    Environ Pollut; 2018 Jul; 238():617-623. PubMed ID: 29609173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen losses, uptake and abundance of ammonia oxidizers in soil under mineral and organo-mineral fertilization regimes.
    Florio A; Felici B; Migliore M; Dell'Abate MT; Benedetti A
    J Sci Food Agric; 2016 May; 96(7):2440-50. PubMed ID: 26249321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissimilatory Nitrate Reduction Processes in Typical Chinese Paddy Soils: Rates, Relative Contributions, and Influencing Factors.
    Shan J; Zhao X; Sheng R; Xia Y; Ti C; Quan X; Wang S; Wei W; Yan X
    Environ Sci Technol; 2016 Sep; 50(18):9972-80. PubMed ID: 27499451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variability in responses of bacterial communities and nitrogen oxide emission to urea fertilization among various flooded paddy soils.
    Wang N; Ding LJ; Xu HJ; Li HB; Su JQ; Zhu YG
    FEMS Microbiol Ecol; 2015 Mar; 91(3):. PubMed ID: 25764461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox-controlled release dynamics of thallium in periodically flooded arable soil.
    Antić-Mladenović S; Frohne T; Kresović M; Stärk HJ; Savić D; Ličina V; Rinklebe J
    Chemosphere; 2017 Jul; 178():268-276. PubMed ID: 28334667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogen mineralization and nitrate leaching of a sandy soil amended with different organic wastes.
    Burgos P; Madejón E; Cabrera F
    Waste Manag Res; 2006 Apr; 24(2):175-82. PubMed ID: 16634232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subsurface nitrate reduction under wetlands takes place in narrow superficial zones.
    Ribas D; Calderer M; Marti V; Johnsen AR; Aamand J; Nilsson B; Jensen JK; Engesgaard P; Morici C
    Environ Technol; 2017 Nov; 38(21):2725-2732. PubMed ID: 28004595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimony and arsenic partitioning during Fe
    Karimian N; Johnston SG; Burton ED
    Chemosphere; 2018 Mar; 195():515-523. PubMed ID: 29277031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.