These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 25600496)

  • 1. Human factors assessment of conflict resolution aid reliability and time pressure in future air traffic control.
    Trapsilawati F; Qu X; Wickens CD; Chen CH
    Ergonomics; 2015; 58(6):897-908. PubMed ID: 25600496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benefits of Imperfect Conflict Resolution Advisory Aids for Future Air Traffic Control.
    Trapsilawati F; Wickens CD; Qu X; Chen CH
    Hum Factors; 2016 Nov; 58(7):1007-1019. PubMed ID: 27422153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automation in future air traffic management: effects of decision aid reliability on controller performance and mental workload.
    Metzger U; Parasuraman R
    Hum Factors; 2005; 47(1):35-49. PubMed ID: 15960085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transitioning to future air traffic management: effects of imperfect automation on controller attention and performance.
    Rovira E; Parasuraman R
    Hum Factors; 2010 Jun; 52(3):411-25. PubMed ID: 21077563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of alerting designs on air traffic controller's eye movement patterns and situation awareness.
    Kearney P; Li WC; Yu CS; Braithwaite G
    Ergonomics; 2019 Feb; 62(2):305-318. PubMed ID: 29943681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Difficulty to Break a Relational Complexity Network Can Predict Air Traffic Controllers' Mental Workload and Performance in Conflict Resolution.
    Zhang J; E X; Du F; Yang J; Loft S
    Hum Factors; 2021 Mar; 63(2):240-253. PubMed ID: 31618105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Procedural errors in air traffic control: effects of traffic density, expertise, and automation.
    Di Nocera F; Fabrizi R; Terenzi M; Ferlazzo F
    Aviat Space Environ Med; 2006 Jun; 77(6):639-43. PubMed ID: 16780243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cognitive process modelling of controllers in en route air traffic control.
    Inoue S; Furuta K; Nakata K; Kanno T; Aoyama H; Brown M
    Ergonomics; 2012; 55(4):450-64. PubMed ID: 22423677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative position vectors: an alternative approach to conflict detection in air traffic control.
    Vuckovic A; Sanderson P; Neal A; Gaukrodger S; Wong BL
    Hum Factors; 2013 Oct; 55(5):946-64. PubMed ID: 24218904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defining the drivers for accepting decision making automation in air traffic management.
    Bekier M; Molesworth BR; Williamson A
    Ergonomics; 2011 Apr; 54(4):347-56. PubMed ID: 21491277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Field Study of Work Type Influence on Air Traffic Controllers' Fatigue Based on Data-Driven PERCLOS Detection.
    Zhang J; Chen Z; Liu W; Ding P; Wu Q
    Int J Environ Res Public Health; 2021 Nov; 18(22):. PubMed ID: 34831695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Psychophysiological coherence training to moderate air traffic controllers' fatigue on rotating roster.
    Li WC; Zhang J; Kearney P
    Risk Anal; 2023 Feb; 43(2):391-404. PubMed ID: 35212002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An empirically grounded agent based model for modeling directs, conflict detection and resolution operations in air traffic management.
    Bongiorno C; Miccichè S; Mantegna RN
    PLoS One; 2017; 12(4):e0175036. PubMed ID: 28419160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A passive brain-computer interface application for the mental workload assessment on professional air traffic controllers during realistic air traffic control tasks.
    Aricò P; Borghini G; Di Flumeri G; Colosimo A; Pozzi S; Babiloni F
    Prog Brain Res; 2016; 228():295-328. PubMed ID: 27590973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Team performance in networked supervisory control of unmanned air vehicles: effects of automation, working memory, and communication content.
    McKendrick R; Shaw T; de Visser E; Saqer H; Kidwell B; Parasuraman R
    Hum Factors; 2014 May; 56(3):463-75. PubMed ID: 24930169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Operator selection for human-automation teaming: The role of manual task skill in predicting automation failure intervention.
    Griffiths N; Bowden V; Wee S; Strickland L; Loft S
    Appl Ergon; 2024 Jul; 118():104288. PubMed ID: 38636348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reducing the Costs of Automation Failure by Providing Voluntary Automation Checking Tools.
    Bowden V; Long D; Loft S
    Hum Factors; 2024 Jul; 66(7):1817-1829. PubMed ID: 37500496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remembering to execute deferred tasks in simulated air traffic control: The impact of interruptions.
    Wilson MD; Farrell S; Visser TAW; Loft S
    J Exp Psychol Appl; 2018 Sep; 24(3):360-379. PubMed ID: 30047752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATC-lab: an air traffic control simulator for the laboratory.
    Loft S; Hill A; Neal A; Humphreys M; Yeo G
    Behav Res Methods Instrum Comput; 2004 May; 36(2):331-8. PubMed ID: 15354699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Analysis of Occurrences Associated with Air Traffic Volume and Air Traffic Controllers' Alertness for Fatigue Risk Management.
    Li WC; Kearney P; Zhang J; Hsu YL; Braithwaite G
    Risk Anal; 2021 Jun; 41(6):1004-1018. PubMed ID: 32920882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.