These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
359 related articles for article (PubMed ID: 25600627)
1. Conditions for seeding and promoting neo-auricular cartilage formation in a fibrous collagen scaffold. Zhao X; Bichara DA; Zhou L; Kulig KM; Tseng A; Bowley CM; Vacanti JP; Pomerantseva I; Sundback CA; Randolph MA J Craniomaxillofac Surg; 2015 Apr; 43(3):382-9. PubMed ID: 25600627 [TBL] [Abstract][Full Text] [Related]
2. Successful creation of tissue-engineered autologous auricular cartilage in an immunocompetent large animal model. Bichara DA; Pomerantseva I; Zhao X; Zhou L; Kulig KM; Tseng A; Kimura AM; Johnson MA; Vacanti JP; Randolph MA; Sundback CA Tissue Eng Part A; 2014 Jan; 20(1-2):303-12. PubMed ID: 23980800 [TBL] [Abstract][Full Text] [Related]
3. Engineering ear constructs with a composite scaffold to maintain dimensions. Zhou L; Pomerantseva I; Bassett EK; Bowley CM; Zhao X; Bichara DA; Kulig KM; Vacanti JP; Randolph MA; Sundback CA Tissue Eng Part A; 2011 Jun; 17(11-12):1573-81. PubMed ID: 21284558 [TBL] [Abstract][Full Text] [Related]
4. Comparison of different chondrocytes for use in tissue engineering of cartilage model structures. Isogai N; Kusuhara H; Ikada Y; Ohtani H; Jacquet R; Hillyer J; Lowder E; Landis WJ Tissue Eng; 2006 Apr; 12(4):691-703. PubMed ID: 16674284 [TBL] [Abstract][Full Text] [Related]
5. Tissue engineering a model for the human ear: assessment of size, shape, morphology, and gene expression following seeding of different chondrocytes. Kusuhara H; Isogai N; Enjo M; Otani H; Ikada Y; Jacquet R; Lowder E; Landis WJ Wound Repair Regen; 2009; 17(1):136-46. PubMed ID: 19152661 [TBL] [Abstract][Full Text] [Related]
7. Ethanol treatment of nanoPGA/PCL composite scaffolds enhances human chondrocyte development in the cellular microenvironment of tissue-engineered auricle constructs. Hirano N; Kusuhara H; Sueyoshi Y; Teramura T; Murthy A; Asamura S; Isogai N; Jacquet RD; Landis WJ PLoS One; 2021; 16(7):e0253149. PubMed ID: 34242238 [TBL] [Abstract][Full Text] [Related]
8. Ear-Shaped Stable Auricular Cartilage Engineered from Extensively Expanded Chondrocytes in an Immunocompetent Experimental Animal Model. Pomerantseva I; Bichara DA; Tseng A; Cronce MJ; Cervantes TM; Kimura AM; Neville CM; Roscioli N; Vacanti JP; Randolph MA; Sundback CA Tissue Eng Part A; 2016 Feb; 22(3-4):197-207. PubMed ID: 26529401 [TBL] [Abstract][Full Text] [Related]
9. Tissue engineering of autologous cartilage for craniofacial reconstruction by injection molding. Chang SC; Tobias G; Roy AK; Vacanti CA; Bonassar LJ Plast Reconstr Surg; 2003 Sep; 112(3):793-9; discussion 800-1. PubMed ID: 12960860 [TBL] [Abstract][Full Text] [Related]
10. The formation of human auricular cartilage from microtic tissue: An in vivo study. Ishak MF; See GB; Hui CK; Abdullah Ab; Saim Lb; Saim Ab; Idrus Rb Int J Pediatr Otorhinolaryngol; 2015 Oct; 79(10):1634-9. PubMed ID: 26250439 [TBL] [Abstract][Full Text] [Related]
11. Engineering of human tracheal tissue with collagen-enforced poly-lactic-glycolic acid non-woven mesh: a preliminary study in nude mice. Wu W; Feng X; Mao T; Feng X; Ouyang HW; Zhao G; Chen F Br J Oral Maxillofac Surg; 2007 Jun; 45(4):272-8. PubMed ID: 17097777 [TBL] [Abstract][Full Text] [Related]
12. Tissue engineering of autologous cartilage grafts in three-dimensional in vitro macroaggregate culture system. Naumann A; Dennis JE; Aigner J; Coticchia J; Arnold J; Berghaus A; Kastenbauer ER; Caplan AI Tissue Eng; 2004; 10(11-12):1695-706. PubMed ID: 15684678 [TBL] [Abstract][Full Text] [Related]
13. Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo. Martínez Ávila H; Feldmann EM; Pleumeekers MM; Nimeskern L; Kuo W; de Jong WC; Schwarz S; Müller R; Hendriks J; Rotter N; van Osch GJ; Stok KS; Gatenholm P Biomaterials; 2015 Mar; 44():122-33. PubMed ID: 25617132 [TBL] [Abstract][Full Text] [Related]
14. Long-Term Morphological and Microarchitectural Stability of Tissue-Engineered, Patient-Specific Auricles In Vivo. Cohen BP; Hooper RC; Puetzer JL; Nordberg R; Asanbe O; Hernandez KA; Spector JA; Bonassar LJ Tissue Eng Part A; 2016 Mar; 22(5-6):461-8. PubMed ID: 26847742 [TBL] [Abstract][Full Text] [Related]
16. Long-Term Comparison between Human Normal Conchal and Microtia Chondrocytes Regenerated by Tissue Engineering on Nanofiber Polyglycolic Acid Scaffolds. Nakao H; Jacquet RD; Shasti M; Isogai N; Murthy AS; Landis WJ Plast Reconstr Surg; 2017 Apr; 139(4):911e-921e. PubMed ID: 28350666 [TBL] [Abstract][Full Text] [Related]
17. Growth factor stimulation improves the structure and properties of scaffold-free engineered auricular cartilage constructs. Rosa RG; Joazeiro PP; Bianco J; Kunz M; Weber JF; Waldman SD PLoS One; 2014; 9(8):e105170. PubMed ID: 25126941 [TBL] [Abstract][Full Text] [Related]
18. The tissue-engineered auricle: past, present, and future. Bichara DA; O'Sullivan NA; Pomerantseva I; Zhao X; Sundback CA; Vacanti JP; Randolph MA Tissue Eng Part B Rev; 2012 Feb; 18(1):51-61. PubMed ID: 21827281 [TBL] [Abstract][Full Text] [Related]
19. [Comparison study of tissue engineered cartilage constructed with chondrocytes derived from porcine auricular and articular cartilage]. Kang N; Liu X; Cao Y; Xiao R Zhonghua Zheng Xing Wai Ke Za Zhi; 2014 Jan; 30(1):33-40. PubMed ID: 24754196 [TBL] [Abstract][Full Text] [Related]
20. Platelet-rich plasma gel composited with nondegradable porous polyurethane scaffolds as a potential auricular cartilage alternative. Wang Z; Qin H; Feng Z; Zhao Y J Biomater Appl; 2016 Feb; 30(7):889-99. PubMed ID: 26359295 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]