BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 25600682)

  • 1. Effectiveness of shrinkage and variable selection methods for the prediction of complex human traits using data from distantly related individuals.
    Berger S; Pérez-Rodríguez P; Veturi Y; Simianer H; de los Campos G
    Ann Hum Genet; 2015 Mar; 79(2):122-35. PubMed ID: 25600682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of complex human traits using the genomic best linear unbiased predictor.
    de Los Campos G; Vazquez AI; Fernando R; Klimentidis YC; Sorensen D
    PLoS Genet; 2013; 9(7):e1003608. PubMed ID: 23874214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide prediction of traits with different genetic architecture through efficient variable selection.
    Wimmer V; Lehermeier C; Albrecht T; Auinger HJ; Wang Y; Schön CC
    Genetics; 2013 Oct; 195(2):573-87. PubMed ID: 23934883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic prediction based on selective linkage disequilibrium pruning of low-coverage whole-genome sequence variants in a pure Duroc population.
    Zhu D; Zhao Y; Zhang R; Wu H; Cai G; Wu Z; Wang Y; Hu X
    Genet Sel Evol; 2023 Oct; 55(1):72. PubMed ID: 37853325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using selection index theory to estimate consistency of multi-locus linkage disequilibrium across populations.
    Wientjes YC; Veerkamp RF; Calus MP
    BMC Genet; 2015 Jul; 16():87. PubMed ID: 26187501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of QTL minor allele frequency on genomic evaluation using real genotype data and simulated phenotypes in Japanese Black cattle.
    Uemoto Y; Sasaki S; Kojima T; Sugimoto Y; Watanabe T
    BMC Genet; 2015 Nov; 16():134. PubMed ID: 26586567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the value of phenotypic information from non-genotyped animals for QTL mapping of complex traits in real and simulated populations.
    Melo TP; Takada L; Baldi F; Oliveira HN; Dias MM; Neves HH; Schenkel FS; Albuquerque LG; Carvalheiro R
    BMC Genet; 2016 Jun; 17(1):89. PubMed ID: 27328759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contributions of linkage disequilibrium and co-segregation information to the accuracy of genomic prediction.
    Sun X; Fernando R; Dekkers J
    Genet Sel Evol; 2016 Oct; 48(1):77. PubMed ID: 27729012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy of prediction of simulated polygenic phenotypes and their underlying quantitative trait loci genotypes using real or imputed whole-genome markers in cattle.
    Hassani S; Saatchi M; Fernando RL; Garrick DJ
    Genet Sel Evol; 2015 Dec; 47():99. PubMed ID: 26698091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient unified model for genome-wide association studies and genomic selection.
    Li H; Su G; Jiang L; Bao Z
    Genet Sel Evol; 2017 Aug; 49(1):64. PubMed ID: 28836943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accounting for trait architecture in genomic predictions of US Holstein cattle using a weighted realized relationship matrix.
    Tiezzi F; Maltecca C
    Genet Sel Evol; 2015 Apr; 47(1):24. PubMed ID: 25886167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy of Genomic Prediction in Synthetic Populations Depending on the Number of Parents, Relatedness, and Ancestral Linkage Disequilibrium.
    Schopp P; Müller D; Technow F; Melchinger AE
    Genetics; 2017 Jan; 205(1):441-454. PubMed ID: 28049710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relevance of genetic relationship in GWAS and genomic prediction.
    Pereira HD; Soriano Viana JM; Andrade ACB; Fonseca E Silva F; Paes GP
    J Appl Genet; 2018 Feb; 59(1):1-8. PubMed ID: 29190011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic selection and complex trait prediction using a fast EM algorithm applied to genome-wide markers.
    Shepherd RK; Meuwissen TH; Woolliams JA
    BMC Bioinformatics; 2010 Oct; 11():529. PubMed ID: 20969788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of linkage disequilibrium measures between multi-allelic markers as predictors of linkage disequilibrium between markers and QTL.
    Zhao H; Nettleton D; Soller M; Dekkers JC
    Genet Res; 2005 Aug; 86(1):77-87. PubMed ID: 16181525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High resolution mapping of quantitative trait loci by linkage disequilibrium analysis.
    Fan R; Xiong M
    Eur J Hum Genet; 2002 Oct; 10(10):607-15. PubMed ID: 12357331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Empirical and deterministic accuracies of across-population genomic prediction.
    Wientjes YC; Veerkamp RF; Bijma P; Bovenhuis H; Schrooten C; Calus MP
    Genet Sel Evol; 2015 Feb; 47(1):5. PubMed ID: 25885467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of RR-BLUP Genomic Selection Models that Incorporate Peak Genome-Wide Association Study Signals in Maize and Sorghum.
    Rice B; Lipka AE
    Plant Genome; 2019 Mar; 12(1):. PubMed ID: 30951091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide association study for endocrine fertility traits using single nucleotide polymorphism arrays and sequence variants in dairy cattle.
    Tenghe AMM; Bouwman AC; Berglund B; Strandberg E; de Koning DJ; Veerkamp RF
    J Dairy Sci; 2016 Jul; 99(7):5470-5485. PubMed ID: 27157577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative trait loci markers derived from whole genome sequence data increases the reliability of genomic prediction.
    Brøndum RF; Su G; Janss L; Sahana G; Guldbrandtsen B; Boichard D; Lund MS
    J Dairy Sci; 2015 Jun; 98(6):4107-16. PubMed ID: 25892697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.