These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 25601439)

  • 1. Oxidative stress conditions increase the frequency of de novo formation of the yeast [PSI+] prion.
    Doronina VA; Staniforth GL; Speldewinde SH; Tuite MF; Grant CM
    Mol Microbiol; 2015 Apr; 96(1):163-74. PubMed ID: 25601439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methionine oxidation of Sup35 protein induces formation of the [PSI+] prion in a yeast peroxiredoxin mutant.
    Sideri TC; Koloteva-Levine N; Tuite MF; Grant CM
    J Biol Chem; 2011 Nov; 286(45):38924-31. PubMed ID: 21832086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disrupting the cortical actin cytoskeleton points to two distinct mechanisms of yeast [PSI+] prion formation.
    Speldewinde SH; Doronina VA; Tuite MF; Grant CM
    PLoS Genet; 2017 Apr; 13(4):e1006708. PubMed ID: 28369054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ribosome-associated peroxiredoxins suppress oxidative stress-induced de novo formation of the [PSI+] prion in yeast.
    Sideri TC; Stojanovski K; Tuite MF; Grant CM
    Proc Natl Acad Sci U S A; 2010 Apr; 107(14):6394-9. PubMed ID: 20308573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autophagy protects against de novo formation of the [PSI+] prion in yeast.
    Speldewinde SH; Doronina VA; Grant CM
    Mol Biol Cell; 2015 Dec; 26(25):4541-51. PubMed ID: 26490118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methionine Sulfoxide Reductases Suppress the Formation of the [
    Schepers J; Carter Z; Kritsiligkou P; Grant CM
    Antioxidants (Basel); 2023 Feb; 12(2):. PubMed ID: 36829961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo [PSI
    Sharma J; Wisniewski BT; Paulson E; Obaoye JO; Merrill SJ; Manogaran AL
    Sci Rep; 2017 Mar; 7(1):76. PubMed ID: 28250435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sup35 methionine oxidation is a trigger for de novo [PSI(+)] prion formation.
    Grant CM
    Prion; 2015; 9(4):257-65. PubMed ID: 26267336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular basis for transmission barrier and interference between closely related prion proteins in yeast.
    Afanasieva EG; Kushnirov VV; Tuite MF; Ter-Avanesyan MD
    J Biol Chem; 2011 May; 286(18):15773-80. PubMed ID: 21454674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyzing the birth and propagation of two distinct prions, [PSI+] and [Het-s](y), in yeast.
    Mathur V; Taneja V; Sun Y; Liebman SW
    Mol Biol Cell; 2010 May; 21(9):1449-61. PubMed ID: 20219972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased [PSI+] appearance by fusion of Rnq1 with the prion domain of Sup35 in Saccharomyces cerevisiae.
    Choe YJ; Ryu Y; Kim HJ; Seok YJ
    Eukaryot Cell; 2009 Jul; 8(7):968-76. PubMed ID: 19411620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of charged residues in the N-domain of Sup35 protein on prion [PSI+] stability and propagation.
    Bondarev SA; Shchepachev VV; Kajava AV; Zhouravleva GA
    J Biol Chem; 2013 Oct; 288(40):28503-13. PubMed ID: 23965990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro.
    Derkatch IL; Uptain SM; Outeiro TF; Krishnan R; Lindquist SL; Liebman SW
    Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12934-9. PubMed ID: 15326312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the interactions of yeast prions: [SWI+], [PSI+], and [PIN+].
    Du Z; Li L
    Genetics; 2014 Jun; 197(2):685-700. PubMed ID: 24727082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequestrase chaperones protect against oxidative stress-induced protein aggregation and [PSI+] prion formation.
    Carter Z; Creamer D; Kouvidi A; Grant CM
    PLoS Genet; 2024 Feb; 20(2):e1011194. PubMed ID: 38422160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conversion of a yeast prion protein to an infectious form in bacteria.
    Garrity SJ; Sivanathan V; Dong J; Lindquist S; Hochschild A
    Proc Natl Acad Sci U S A; 2010 Jun; 107(23):10596-601. PubMed ID: 20484678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hsp104 overexpression cures Saccharomyces cerevisiae [PSI+] by causing dissolution of the prion seeds.
    Park YN; Zhao X; Yim YI; Todor H; Ellerbrock R; Reidy M; Eisenberg E; Masison DC; Greene LE
    Eukaryot Cell; 2014 May; 13(5):635-47. PubMed ID: 24632242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth phase-dependent changes in the size and infectivity of SDS-resistant Sup35p assemblies associated with the [PSI
    Wang K; Melki R; Kabani M
    Mol Microbiol; 2019 Sep; 112(3):932-943. PubMed ID: 31206803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yeast J-protein Sis1 prevents prion toxicity by moderating depletion of prion protein.
    Kumar J; Reidy M; Masison DC
    Genetics; 2021 Oct; 219(2):. PubMed ID: 34849884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yeast Sup35 Prion Structure: Two Types, Four Parts, Many Variants.
    Dergalev AA; Alexandrov AI; Ivannikov RI; Ter-Avanesyan MD; Kushnirov VV
    Int J Mol Sci; 2019 May; 20(11):. PubMed ID: 31146333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.