BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 2560147)

  • 1. Histochemical changes in enzymes of energy metabolism in the dentate gyrus accompany deafferentation and synaptic reorganization.
    Borowsky IW; Collins RC
    Neuroscience; 1989; 33(2):253-62. PubMed ID: 2560147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced but delayed axonal sprouting of the commissural/associational pathway following a combined entorhinal cortex/fimbria fornix lesion.
    Schauwecker PE; McNeill TH
    J Comp Neurol; 1995 Jan; 351(3):453-64. PubMed ID: 7535807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethanol exposure following unilateral entorhinal deafferentation alters synaptic reorganization in the rat dentate gyrus: a quantitative analysis of acetylcholinesterase histochemistry.
    Orona E; Hunter BE; Walker DW
    Exp Neurol; 1988 Jul; 101(1):114-31. PubMed ID: 3391254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histochemical evidence of altered development of cholinergic fibers in the rat dentate gyrus following lesions. II. Effects of partial entorhinal and simultaneous multiple lesions.
    Nadler JV; Cotman CW; Paoletti C; Lynch GS
    J Comp Neurol; 1977 Feb; 171(4):589-604. PubMed ID: 833359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new type of lesion-induced synaptogenesis: I. Synaptic turnover in non-denervated zones of the dentate gyrus in young adult rats.
    Hoff SF; Scheff SW; Kwan AY; Cotman CW
    Brain Res; 1981 Oct; 222(1):1-13. PubMed ID: 7296257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased sensitivity to adenosine in the rat dentate gyrus molecular layer two weeks after partial entorhinal lesions.
    Kahle JS; Ułas J; Cotman CW
    Brain Res; 1993 Apr; 609(1-2):201-10. PubMed ID: 8508304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histochemical evidence of altered development of cholinergic fibers in the rat dentate gyrus following lesions. I. Time course after complete unilateral entorhinal lesion at various ages.
    Nadler JV; Cotman CW; Lynch GS
    J Comp Neurol; 1977 Feb; 171(4):561-87. PubMed ID: 833358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sprouting responsiveness in the dentate gyrus is reduced by ethanol administered following but not preceding an entorhinal lesion.
    Tjossem HH; Goodlett CR; West JR
    Exp Neurol; 1987 Sep; 97(3):441-53. PubMed ID: 3622702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of the neural adhesion molecule L1 in the deafferented dentate gyrus.
    Jucker M; D'Amato F; Mondadori C; Mohajeri H; Magyar J; Bartsch U; Schachner M
    Neuroscience; 1996 Dec; 75(3):703-15. PubMed ID: 8951867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The OM series of terminal field-specific monoclonal antibodies demonstrate reinnervation of the adult rat dentate gyrus by embryonic entorhinal transplants.
    Woodhams PL; Kawano H; Raisman G
    Neuroscience; 1992; 46(1):71-82. PubMed ID: 1375711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lesion-induced synapse reorganization in the hippocampus of cats: sprouting of entorhinal, commissural/associational, and mossy fiber projections after unilateral entorhinal cortex lesions, with comments on the normal organization of these pathways.
    Steward O
    Hippocampus; 1992 Jul; 2(3):247-68. PubMed ID: 1284974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in the distribution of the dentate gyrus associational system following unilateral or bilateral entorhinal lesions in the adult rat.
    Lynch G; Gall C; Rose G; Cotman C
    Brain Res; 1976 Jun; 110(1):57-71. PubMed ID: 1276951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of collateral sprouting on the density of innervation of normal target sites: implications for theories on the regulation of the size of developing synaptic domains.
    Gall C; McWilliams R; Lynch G
    Brain Res; 1979 Oct; 175(1):37-47. PubMed ID: 487150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stereological analysis of the reorganization of the dentate gyrus following entorhinal cortex lesion in mice.
    Phinney AL; Calhoun ME; Woods AG; Deller T; Jucker M
    Eur J Neurosci; 2004 Apr; 19(7):1731-40. PubMed ID: 15078547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histochemical localization of cytochrome oxidase in the hippocampus: correlation with specific neuronal types and afferent pathways.
    Kageyama GH; Wong-Riley MT
    Neuroscience; 1982 Oct; 7(10):2337-61. PubMed ID: 6294558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kainate receptors in the rat hippocampus: a distribution and time course of changes in response to unilateral lesions of the entorhinal cortex.
    Ułas J; Monaghan DT; Cotman CW
    J Neurosci; 1990 Jul; 10(7):2352-62. PubMed ID: 2165522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative histochemical changes in enzymes involved in energy metabolism in the rat brain during postnatal development. I. Cytochrome oxidase and lactate dehydrogenase.
    Bilger A; Nehlig A
    Int J Dev Neurosci; 1991; 9(6):545-53. PubMed ID: 1666481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new type of lesion-induced synaptogenesis: II. The effect of aging on synaptic turnover in non-denervated zones.
    Hoff SF; Scheff SW; Kwan AY; Cotman CW
    Brain Res; 1981 Oct; 222(1):15-27. PubMed ID: 7296261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decline in reactive fiber growth in the dentate gyrus of aged rats compared to young adult rats following entorhinal cortex removal.
    Scheff SW; Benardo LS; Cotman CW
    Brain Res; 1980 Oct; 199(1):21-38. PubMed ID: 7407623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic anatomy of brain: a comparison of regional capillary density, glucose metabolism, and enzyme activities.
    Borowsky IW; Collins RC
    J Comp Neurol; 1989 Oct; 288(3):401-13. PubMed ID: 2551935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.