These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 25601565)

  • 21. Phosphatidylinositol-dependent phospholipases C Plc2 and Plc3 of Candida albicans are dispensable for morphogenesis and host-pathogen interaction.
    Knechtle P; Goyard S; Brachat S; Ibrahim-Granet O; d'Enfert C
    Res Microbiol; 2005 Aug; 156(7):822-9. PubMed ID: 16040234
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Candida albicans Sfl2, a temperature-induced transcriptional regulator, is required for virulence in a murine gastrointestinal infection model.
    Song W; Wang H; Chen J
    FEMS Yeast Res; 2011 Mar; 11(2):209-22. PubMed ID: 21205158
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Boric acid destabilizes the hyphal cytoskeleton and inhibits invasive growth of Candida albicans.
    Pointer BR; Boyer MP; Schmidt M
    Yeast; 2015 Apr; 32(4):389-98. PubMed ID: 25612315
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The two-component response regulator Skn7 belongs to a network of transcription factors regulating morphogenesis in Candida albicans and independently limits morphogenesis-induced ROS accumulation.
    Basso V; Znaidi S; Lagage V; Cabral V; Schoenherr F; LeibundGut-Landmann S; d'Enfert C; Bachellier-Bassi S
    Mol Microbiol; 2017 Oct; 106(1):157-182. PubMed ID: 28752552
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The moonlighting protein Tsa1p is implicated in oxidative stress response and in cell wall biogenesis in Candida albicans.
    Urban C; Xiong X; Sohn K; Schröppel K; Brunner H; Rupp S
    Mol Microbiol; 2005 Sep; 57(5):1318-41. PubMed ID: 16102003
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential regulation of the transcriptional repressor NRG1 accounts for altered host-cell interactions in Candida albicans and Candida dubliniensis.
    Moran GP; MacCallum DM; Spiering MJ; Coleman DC; Sullivan DJ
    Mol Microbiol; 2007 Nov; 66(4):915-29. PubMed ID: 17927699
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The general transcriptional repressor Tup1 governs filamentous development in Candida tropicalis.
    Gong J; Huang Q; Liang W; Wei Y; Huang G
    Acta Biochim Biophys Sin (Shanghai); 2019 May; 51(5):463-470. PubMed ID: 30968937
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A genome-wide transcriptional analysis of morphology determination in Candida albicans.
    Carlisle PL; Kadosh D
    Mol Biol Cell; 2013 Feb; 24(3):246-60. PubMed ID: 23242994
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Control of filament formation in Candida albicans by the transcriptional repressor TUP1.
    Braun BR; Johnson AD
    Science; 1997 Jul; 277(5322):105-9. PubMed ID: 9204892
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcript profiling reveals rewiring of iron assimilation gene expression in Candida albicans and C. dubliniensis.
    Moran GP
    FEMS Yeast Res; 2012 Dec; 12(8):918-23. PubMed ID: 22888912
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Filament condition-specific response elements control the expression of NRG1 and UME6, key transcriptional regulators of morphology and virulence in Candida albicans.
    Childers DS; Kadosh D
    PLoS One; 2015; 10(3):e0122775. PubMed ID: 25811669
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Sko1 protein represses the yeast-to-hypha transition and regulates the oxidative stress response in Candida albicans.
    Alonso-Monge R; Román E; Arana DM; Prieto D; Urrialde V; Nombela C; Pla J
    Fungal Genet Biol; 2010 Jul; 47(7):587-601. PubMed ID: 20388546
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A GATA transcription factor recruits Hda1 in response to reduced Tor1 signaling to establish a hyphal chromatin state in Candida albicans.
    Lu Y; Su C; Liu H
    PLoS Pathog; 2012; 8(4):e1002663. PubMed ID: 22536157
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hyphal development in Candida albicans requires two temporally linked changes in promoter chromatin for initiation and maintenance.
    Lu Y; Su C; Wang A; Liu H
    PLoS Biol; 2011 Jul; 9(7):e1001105. PubMed ID: 21811397
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The zinc cluster transcription factor Rha1 is a positive filamentation regulator in Candida albicans.
    Parvizi Omran R; Ramírez-Zavala B; Aji Tebung W; Yao S; Feng J; Law C; Dumeaux V; Morschhäuser J; Whiteway M
    Genetics; 2022 Jan; 220(1):. PubMed ID: 34849863
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2.
    Conlan RS; Tzamarias D
    J Mol Biol; 2001 Jun; 309(5):1007-15. PubMed ID: 11399075
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi.
    Stoldt VR; Sonneborn A; Leuker CE; Ernst JF
    EMBO J; 1997 Apr; 16(8):1982-91. PubMed ID: 9155024
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptional repression by Tup1-Ssn6.
    Malavé TM; Dent SY
    Biochem Cell Biol; 2006 Aug; 84(4):437-43. PubMed ID: 16936817
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extensive functional redundancy in the regulation of Candida albicans drug resistance and morphogenesis by lysine deacetylases Hos2, Hda1, Rpd3 and Rpd31.
    Li X; Robbins N; O'Meara TR; Cowen LE
    Mol Microbiol; 2017 Feb; 103(4):635-656. PubMed ID: 27868254
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid proliferation due to better metabolic adaptation results in full virulence of a filament-deficient Candida albicans strain.
    Dunker C; Polke M; Schulze-Richter B; Schubert K; Rudolphi S; Gressler AE; Pawlik T; Prada Salcedo JP; Niemiec MJ; Slesiona-Künzel S; Swidergall M; Martin R; Dandekar T; Jacobsen ID
    Nat Commun; 2021 Jun; 12(1):3899. PubMed ID: 34162849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.