BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 25601693)

  • 1. Precise determination of nonlinear function of ion mobility for explosives and drugs at high electric fields for microchip FAIMS.
    Guo D; Wang Y; Li L; Wang X; Luo J
    J Mass Spectrom; 2015 Jan; 50(1):198-205. PubMed ID: 25601693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of paper spray ionization high-field asymmetric waveform ion mobility spectrometry for forensic applications.
    Tsai CW; Tipple CA; Yost RA
    Rapid Commun Mass Spectrom; 2018 Apr; 32(7):552-560. PubMed ID: 29380926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of explosives using corona discharge ionization combined with ion mobility spectrometry-mass spectrometry.
    Lee J; Park S; Cho SG; Goh EM; Lee S; Koh SS; Kim J
    Talanta; 2014 Mar; 120():64-70. PubMed ID: 24468343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elimination of the helium requirement in high-field asymmetric waveform ion mobility spectrometry (FAIMS): beneficial effects of decreasing the analyzer gap width on peptide analysis.
    Barnett DA; Ouellette RJ
    Rapid Commun Mass Spectrom; 2011 Jul; 25(14):1959-71. PubMed ID: 21698679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrospray ionization high-field asymmetric waveform ion mobility spectrometry-mass spectrometry.
    Purves RW; Guevremont R
    Anal Chem; 1999 Jul; 71(13):2346-57. PubMed ID: 21662783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive theoretical analysis and experimental exploration of ultrafast microchip-based high-field asymmetric ion mobility spectrometry (FAIMS) technique.
    Li L; Wang Y; Chen C; Wang X; Luo J
    J Mass Spectrom; 2015 Jun; 50(6):792-801. PubMed ID: 26169133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of rectangular and bisinusoidal waveforms in a miniature planar high-field asymmetric waveform ion mobility spectrometer.
    Prieto M; Tsai CW; Boumsellek S; Ferran R; Kaminsky I; Harris S; Yost RA
    Anal Chem; 2011 Dec; 83(24):9237-43. PubMed ID: 22017325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of explosives in vapor phase by field asymmetric ion mobility spectrometry with dopant-assisted laser ionization.
    Kostarev VA; Kotkovskii GE; Chistyakov AA; Akmalov AE
    Talanta; 2022 Aug; 245():123414. PubMed ID: 35487080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of mass spectrometry performance for proteomic analyses using high-field asymmetric waveform ion mobility spectrometry (FAIMS).
    Bonneil E; Pfammatter S; Thibault P
    J Mass Spectrom; 2015 Nov; 50(11):1181-95. PubMed ID: 26505763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser ion mobility spectrometry in the detection of ultra-low quantities of explosives.
    Akmalov AE; Chistyakov AA; Kotkovskii GE; Martynov IL; Spitsin EM
    Eur J Mass Spectrom (Chichester); 2017 Aug; 23(4):140-145. PubMed ID: 29028403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distortion of ion structures by field asymmetric waveform ion mobility spectrometry.
    Shvartsburg AA; Li F; Tang K; Smith RD
    Anal Chem; 2007 Feb; 79(4):1523-8. PubMed ID: 17297950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the fate of nitroaromatic (TNT) and nitramine (RDX and HMX) explosives in fractured and pristine soils.
    Douglas TA; Walsh ME; McGrath CJ; Weiss CA
    J Environ Qual; 2009; 38(6):2285-94. PubMed ID: 19875785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of explosives by positive corona discharge ion mobility spectrometry.
    Tabrizchi M; Ilbeigi V
    J Hazard Mater; 2010 Apr; 176(1-3):692-6. PubMed ID: 20004055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced analyte detection using in-source fragmentation of field asymmetric waveform ion mobility spectrometry-selected ions in combination with time-of-flight mass spectrometry.
    Brown LJ; Smith RW; Toutoungi DE; Reynolds JC; Bristow AW; Ray A; Sage A; Wilson ID; Weston DJ; Boyle B; Creaser CS
    Anal Chem; 2012 May; 84(9):4095-103. PubMed ID: 22455620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-field asymmetric waveform ion mobility spectrometry for mass spectrometry-based proteomics.
    Swearingen KE; Moritz RL
    Expert Rev Proteomics; 2012 Oct; 9(5):505-17. PubMed ID: 23194268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of ion motion in FAIMS through combined use of SIMION and modified SDS.
    Prasad S; Tang K; Manura D; Papanastasiou D; Smith RD
    Anal Chem; 2009 Nov; 81(21):8749-57. PubMed ID: 19785446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The solution of nonlinear function of ion mobility based on FAIMS spectrum peak position].
    Wang DL; Chen CL; Zhao C; Gao J; Kong DY; You H; Brugger J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Aug; 32(8):2050-5. PubMed ID: 23156750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review of applications of high-field asymmetric waveform ion mobility spectrometry (FAIMS) and differential mobility spectrometry (DMS).
    Kolakowski BM; Mester Z
    Analyst; 2007 Sep; 132(9):842-64. PubMed ID: 17710259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct detection of explosives on solid surfaces by low temperature plasma desorption mass spectrometry.
    Zhang Y; Ma X; Zhang S; Yang C; Ouyang Z; Zhang X
    Analyst; 2009 Jan; 134(1):176-81. PubMed ID: 19082190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequential biodegradation of TNT, RDX and HMX in a mixture.
    Sagi-Ben Moshe S; Ronen Z; Dahan O; Weisbrod N; Groisman L; Adar E; Nativ R
    Environ Pollut; 2009; 157(8-9):2231-8. PubMed ID: 19428165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.