These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 25601833)

  • 41. Supplemental vibrotactile feedback control of stabilization and reaching actions of the arm using limb state and position error encodings.
    Krueger AR; Giannoni P; Shah V; Casadio M; Scheidt RA
    J Neuroeng Rehabil; 2017 May; 14(1):36. PubMed ID: 28464891
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Neural Patterns of Reorganization after Intensive Robot-Assisted Virtual Reality Therapy and Repetitive Task Practice in Patients with Chronic Stroke.
    Saleh S; Fluet G; Qiu Q; Merians A; Adamovich SV; Tunik E
    Front Neurol; 2017; 8():452. PubMed ID: 28928708
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reliability and validity of using the Lokomat to assess lower limb joint position sense in people with incomplete spinal cord injury.
    Domingo A; Lam T
    J Neuroeng Rehabil; 2014 Dec; 11():167. PubMed ID: 25516305
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Haptic Error Modulation Outperforms Visual Error Amplification When Learning a Modified Gait Pattern.
    Marchal-Crespo L; Tsangaridis P; Obwegeser D; Maggioni S; Riener R
    Front Neurosci; 2019; 13():61. PubMed ID: 30837824
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Extended training improves the accuracy and efficiency of goal-directed reaching guided by supplemental kinesthetic vibrotactile feedback.
    Shah VA; Thomas A; Mrotek LA; Casadio M; Scheidt RA
    Exp Brain Res; 2023 Feb; 241(2):479-493. PubMed ID: 36576510
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pulsed assistance: a new paradigm of robot training.
    De Santis D; Masia L; Morasso P; Squeri V; Zenzeri J; Casadio M; Riva A
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650504. PubMed ID: 24187319
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Disruption in proprioception from long-term thalamic deep brain stimulation: a pilot study.
    Semrau JA; Herter TM; Kiss ZH; Dukelow SP
    Front Hum Neurosci; 2015; 9():244. PubMed ID: 25983689
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of Short-Term Exposure to Supplemental Vibrotactile Kinesthetic Feedback on Goal-Directed Movements after Stroke: A Proof of Concept Case Series.
    Ballardini G; Krueger A; Giannoni P; Marinelli L; Casadio M; Scheidt RA
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33671643
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Learning to perform a new movement with robotic assistance: comparison of haptic guidance and visual demonstration.
    Liu J; Cramer SC; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2006 Aug; 3():20. PubMed ID: 16945148
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Wrist Proprioception: Amplitude or Position Coding?
    Marini F; Squeri V; Morasso P; Masia L
    Front Neurorobot; 2016; 10():13. PubMed ID: 27807417
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.
    Hu Z; Yoon CH; Park SB; Jo YH
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1361-9. PubMed ID: 26646414
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The cerebellum contributes to proprioception during motion.
    Weeks HM; Therrien AS; Bastian AJ
    J Neurophysiol; 2017 Aug; 118(2):693-702. PubMed ID: 28404825
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Effect of Kinesthetic and Artificial Tactile Noise and Variability on Stiffness Perception.
    Kossowsky H; Farajian M; Nisky I
    IEEE Trans Haptics; 2022; 15(2):351-362. PubMed ID: 35271449
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Oscillatory entrainment of the motor cortical network during motor imagery is modulated by the feedback modality.
    Vukelić M; Gharabaghi A
    Neuroimage; 2015 May; 111():1-11. PubMed ID: 25665968
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Closed-Loop Task Difficulty Adaptation during Virtual Reality Reach-to-Grasp Training Assisted with an Exoskeleton for Stroke Rehabilitation.
    Grimm F; Naros G; Gharabaghi A
    Front Neurosci; 2016; 10():518. PubMed ID: 27895550
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Music meets robotics: a prospective randomized study on motivation during robot aided therapy.
    Baur K; Speth F; Nagle A; Riener R; Klamroth-Marganska V
    J Neuroeng Rehabil; 2018 Aug; 15(1):79. PubMed ID: 30115082
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bilateral robot therapy based on haptics and reinforcement learning: Feasibility study of a new concept for treatment of patients after stroke.
    Squeri V; Casadio M; Vergaro E; Giannoni P; Morasso P; Sanguineti V
    J Rehabil Med; 2009 Nov; 41(12):961-5. PubMed ID: 19841824
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reliability, validity, and clinical feasibility of a rapid and objective assessment of post-stroke deficits in hand proprioception.
    Rinderknecht MD; Lambercy O; Raible V; Büsching I; Sehle A; Liepert J; Gassert R
    J Neuroeng Rehabil; 2018 Jun; 15(1):47. PubMed ID: 29880003
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Somatosensory Training Improves Proprioception and Untrained Motor Function in Parkinson's Disease.
    Elangovan N; Tuite PJ; Konczak J
    Front Neurol; 2018; 9():1053. PubMed ID: 30619029
    [No Abstract]   [Full Text] [Related]  

  • 60. Force field adaptation can be learned using vision in the absence of proprioceptive error.
    Melendez-Calderon A; Masia L; Gassert R; Sandini G; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):298-306. PubMed ID: 21652280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.