These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 25602089)

  • 1. Dynamic size responses to climate change: prevailing effects of rising temperature drive long-term body size increases in a semi-arid passerine.
    Gardner JL; Amano T; Mackey BG; Sutherland WJ; Clayton M; Peters A
    Glob Chang Biol; 2014 Jul; 20(7):2062-75. PubMed ID: 25602089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration.
    Albright TP; Mutiibwa D; Gerson AR; Smith EK; Talbot WA; O'Neill JJ; McKechnie AE; Wolf BO
    Proc Natl Acad Sci U S A; 2017 Feb; 114(9):2283-2288. PubMed ID: 28193891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Australian songbird body size tracks climate variation: 82 species over 50 years.
    Gardner JL; Amano T; Peters A; Sutherland WJ; Mackey B; Joseph L; Stein J; Ikin K; Little R; Smith J; Symonds MRE
    Proc Biol Sci; 2019 Dec; 286(1916):20192258. PubMed ID: 31771472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global warming and Bergmann's rule: do central European passerines adjust their body size to rising temperatures?
    Salewski V; Hochachka WM; Fiedler W
    Oecologia; 2010 Jan; 162(1):247-60. PubMed ID: 19722109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of climatic and environmental change in the demography of a multi-brooded passerine, the woodlark Lullula arborea.
    Wright LJ; Hoblyn RA; Green RE; Bowden CG; Mallord JW; Sutherland WJ; Dolman PM
    J Anim Ecol; 2009 Nov; 78(6):1191-202. PubMed ID: 19594660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contrasting effects of climate on juvenile body size in a Southern Hemisphere passerine bird.
    Kruuk LE; Osmond HL; Cockburn A
    Glob Chang Biol; 2015 Aug; 21(8):2929-41. PubMed ID: 26058467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drivers of climate change impacts on bird communities.
    Pearce-Higgins JW; Eglington SM; Martay B; Chamberlain DE
    J Anim Ecol; 2015 Jul; 84(4):943-54. PubMed ID: 25757576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of extreme weather on two sympatric Australian passerine bird species.
    Gardner JL; Rowley E; de Rebeira P; de Rebeira A; Brouwer L
    Philos Trans R Soc Lond B Biol Sci; 2017 Jun; 372(1723):. PubMed ID: 28483863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Too hot to handle? Behavioural plasticity during incubation in a small, Australian passerine.
    Sharpe LL; Bayter C; Gardner JL
    J Therm Biol; 2021 May; 98():102921. PubMed ID: 34016345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Year-round breeding equatorial Larks from three climatically-distinct populations do not use rainfall, temperature or invertebrate biomass to time reproduction.
    Ndithia HK; Matson KD; Versteegh MA; Muchai M; Tieleman BI
    PLoS One; 2017; 12(4):e0175275. PubMed ID: 28419105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent spatial and temporal changes in body size of terrestrial vertebrates: probable causes and pitfalls.
    Yom-Tov Y; Geffen E
    Biol Rev Camb Philos Soc; 2011 May; 86(2):531-41. PubMed ID: 21070587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooling requirements fueled the collapse of a desert bird community from climate change.
    Riddell EA; Iknayan KJ; Wolf BO; Sinervo B; Beissinger SR
    Proc Natl Acad Sci U S A; 2019 Oct; 116(43):21609-21615. PubMed ID: 31570585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adherence to Bergmann's rule by lizards may depend on thermoregulatory mode: support from a nocturnal gecko.
    Penniket S; Cree A
    Oecologia; 2015 Jun; 178(2):427-40. PubMed ID: 25663371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bergmann's rule across the equator: a case study in Cerdocyon thous (Canidae).
    Martinez PA; Marti DA; Molina WF; Bidau CJ
    J Anim Ecol; 2013 Sep; 82(5):997-1008. PubMed ID: 23550718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive thermoregulation during summer in two populations of an arid-zone passerine.
    Smit B; Harding CT; Hockey PA; McKechnie AE
    Ecology; 2013 May; 94(5):1142-54. PubMed ID: 23858654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Has contemporary climate change played a role in population declines of the lizard Ctenophorus decresii from semi-arid Australia?
    Walker S; Stuart-Fox D; Kearney MR
    J Therm Biol; 2015 Dec; 54():66-77. PubMed ID: 26615728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Individual and demographic consequences of reduced body condition following repeated exposure to high temperatures.
    Gardner JL; Amano T; Sutherland WJ; Clayton M; Peters A
    Ecology; 2016 Mar; 97(3):786-95. PubMed ID: 27197404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geographic variation in body size and sexual size dimorphism of a seed-feeding beetle.
    Stillwell RC; Morse GE; Fox CW
    Am Nat; 2007 Sep; 170(3):358-69. PubMed ID: 17879187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climate change may account for the decline in British ring ouzels Turdus torquatus.
    Beale CM; Burfield IJ; Sim IM; Rebecca GW; Pearce-Higgins JW; Grant MC
    J Anim Ecol; 2006 May; 75(3):826-35. PubMed ID: 16689964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid warming and drought negatively impact population size and reproductive dynamics of an avian predator in the arid southwest.
    Cruz-McDonnell KK; Wolf BO
    Glob Chang Biol; 2016 Jan; 22(1):237-53. PubMed ID: 26367541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.