These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 2560215)
1. Effects of hematoporphyrin derivative on the cellular energy metabolism in the absence and presence of light. Khanum F; Jain V Photochem Photobiol; 1989 Nov; 50(5):647-51. PubMed ID: 2560215 [TBL] [Abstract][Full Text] [Related]
2. Effects of photofrin II and light on cellular adenine nucleotides and their modulation. Khanum F; Jain V Indian J Exp Biol; 1997 Apr; 35(4):356-60. PubMed ID: 9315234 [TBL] [Abstract][Full Text] [Related]
3. Photosensitization of mitochondrial cytochrome c oxidase by hematoporphyrin derivative and related porphyrins in vitro and in vivo. Gibson SL; Hilf R Cancer Res; 1983 Sep; 43(9):4191-7. PubMed ID: 6307505 [TBL] [Abstract][Full Text] [Related]
4. Photosensitization of isolated mitochondria by hematoporphyrin derivative (Photofrin): effects on bioenergetics. Salet C; Moreno G; Atlante A; Passarella S Photochem Photobiol; 1991 Mar; 53(3):391-3. PubMed ID: 1829532 [TBL] [Abstract][Full Text] [Related]
5. Hematoporphyrin derivatives potentiate the radiosensitizing effects of 2-deoxy-D-glucose in cancer cells. Dwarakanath BS; Adhikari JS; Jain V Int J Radiat Oncol Biol Phys; 1999 Mar; 43(5):1125-33. PubMed ID: 10192364 [TBL] [Abstract][Full Text] [Related]
6. Photosensitizing effects of Photofrin II on the site-selected mitochondrial enzymes adenylate kinase and monoamine oxidase. Murant RS; Gibson SL; Hilf R Cancer Res; 1987 Aug; 47(16):4323-8. PubMed ID: 3038310 [TBL] [Abstract][Full Text] [Related]
7. Heterogeneity in 2-deoxy-D-glucose-induced modifications in energetics and radiation responses of human tumor cell lines. Dwarkanath BS; Zolzer F; Chandana S; Bauch T; Adhikari JS; Muller WU; Streffer C; Jain V Int J Radiat Oncol Biol Phys; 2001 Jul; 50(4):1051-61. PubMed ID: 11429233 [TBL] [Abstract][Full Text] [Related]
8. Effect of bethanechol on glycolysis and high energy phosphate metabolism of the rabbit urinary bladder. Levin RM; Ruggieri MR; Gill HS; Haugaard N; Wein AJ J Urol; 1988 Mar; 139(3):646-9. PubMed ID: 2893843 [TBL] [Abstract][Full Text] [Related]
9. The photodynamic effects of photofrin II, hematoporphyrin derivative, hematoporphyrin, and tetrasodium-mesotetra(4-sulfonatophenyl)porphine in vitro: clonogenic cell survival and drug uptake studies. West CM; Moore JV Photochem Photobiol; 1989 Feb; 49(2):169-74. PubMed ID: 2523543 [TBL] [Abstract][Full Text] [Related]
10. [Photodynamic effect of a hematoporphyrin derivative on the sodium pump activity and aerobic glycolysis in tumor cells]. Fu NW Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 1988 Feb; 10(1):26-30. PubMed ID: 2454758 [No Abstract] [Full Text] [Related]
11. Spectroscopic, morphologic, and cytotoxic studies on major fractions of hematoporphyrin derivative and Photofrin II. Sun CH; Duzman E; Mellott J; Liaw LH; Berns MW Lasers Surg Med; 1987; 7(2):171-9. PubMed ID: 2956470 [TBL] [Abstract][Full Text] [Related]
12. Action spectra for hematoporphyrin derivative and Photofrin II with respect to sensitization of human cells in vitro to photoinactivation. Moan J; Sommer S Photochem Photobiol; 1984 Nov; 40(5):631-4. PubMed ID: 6240066 [No Abstract] [Full Text] [Related]
13. Photosensitivity of DNA replication and respiration to haematoporphyrin derivative (photofrin II) in mammalian CV-1 cells. Moreno G; Atlante A; Salet C; Santus R; Vinzens F Int J Radiat Biol Relat Stud Phys Chem Med; 1987 Aug; 52(2):213-22. PubMed ID: 2956208 [TBL] [Abstract][Full Text] [Related]
14. Influence of hypoxia and an acidic environment on the metabolism and viability of cultured cells: potential implications for cell death in tumors. Rotin D; Robinson B; Tannock IF Cancer Res; 1986 Jun; 46(6):2821-6. PubMed ID: 3698008 [TBL] [Abstract][Full Text] [Related]
15. Effects of added nucleotides on renal carbohydrate metabolism. Weidemann MJ; Hems DA; Krebs HA Biochem J; 1969 Oct; 115(1):1-10. PubMed ID: 4310321 [TBL] [Abstract][Full Text] [Related]
16. [Energy metabolism of isolated hepatocytes at various levels of oxidative phosphorylation uncoupling]. Toshchakov VIu; Morozova GI; Anishchenko NA Biokhimiia; 1991 Dec; 56(12):2131-9. PubMed ID: 1839659 [TBL] [Abstract][Full Text] [Related]
17. Stimulation of glycolysis by histidine buffers in mammalian liver during cold hypoxia. Churchill TA; Green CJ; Fuller BJ Arch Biochem Biophys; 1995 Jun; 320(1):43-50. PubMed ID: 7793983 [TBL] [Abstract][Full Text] [Related]
18. Versatility of microglial bioenergetic machinery under starving conditions. Nagy AM; Fekete R; Horvath G; Koncsos G; Kriston C; Sebestyen A; Giricz Z; Kornyei Z; Madarasz E; Tretter L Biochim Biophys Acta Bioenerg; 2018 Mar; 1859(3):201-214. PubMed ID: 29273412 [TBL] [Abstract][Full Text] [Related]
19. Energy metabolism of human neutrophils during phagocytosis. Borregaard N; Herlin T J Clin Invest; 1982 Sep; 70(3):550-7. PubMed ID: 7107894 [TBL] [Abstract][Full Text] [Related]
20. Effects of gamma-rays and glucose analogs on the energy metabolism of a cell line derived from human cerebral glioma. Dwarakanath BS; Jain V Indian J Biochem Biophys; 1991 Jun; 28(3):203-9. PubMed ID: 1786971 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]