These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 25602320)

  • 21. Long-term agroecosystem research in the central Mississippi river basin: hydrogeologic controls and crop management influence on nitrates in loess and fractured glacial till.
    Kitchen NR; Blanchard PE; Lerch RN
    J Environ Qual; 2015 Jan; 44(1):58-70. PubMed ID: 25602321
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of regression methodology with low-frequency water quality sampling to estimate constituent loads for ephemeral watersheds in Texas.
    Toor GS; Harmel RD; Haggard BE; Schmidt G
    J Environ Qual; 2008; 37(5):1847-54. PubMed ID: 18689746
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Incorporating Uncertainty Into the Ranking of SPARROW Model Nutrient Yields From Mississippi/Atchafalaya River Basin Watersheds.
    Robertson DM; Schwarz GE; Saad DA; Alexander RB
    J Am Water Resour Assoc; 2009 Apr; 45(2):534-549. PubMed ID: 22457567
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Denitrification in the shallow ground water of a tile-drained, agricultural watershed.
    Mehnert E; Hwang HH; Johnson TM; Sanford RA; Beaumont WC; Holm TR
    J Environ Qual; 2007; 36(1):80-90. PubMed ID: 17215215
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SPARROW Models Used to Understand Nutrient Sources in the Mississippi/Atchafalaya River Basin.
    Robertson DM; Saad DA
    J Environ Qual; 2013 Sep; 42(5):1422-40. PubMed ID: 24216420
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Navigating the socio-bio-geo-chemistry and engineering of nitrogen management in two illinois tile-drained watersheds.
    David MB; Flint CG; Gentry LE; Dolan MK; Czapar GF; Cooke RA; Lavaire T
    J Environ Qual; 2015 Mar; 44(2):368-81. PubMed ID: 26023956
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The simulation research of dissolved nitrogen and phosphorus non-point source pollution in Xiao-Jiang watershed of Three Gorges Reservoir area.
    Wu L; Long TY; Li CM
    Water Sci Technol; 2010; 61(6):1601-16. PubMed ID: 20351440
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphorus transport through subsurface drainage and surface runoff from a flat watershed in east central Illinois, USA.
    Algoazany AS; Kalita PK; Czapar GF; Mitchell JK
    J Environ Qual; 2007; 36(3):681-93. PubMed ID: 17412904
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contributions of systematic tile drainage to watershed-scale phosphorus transport.
    King KW; Williams MR; Fausey NR
    J Environ Qual; 2015 Mar; 44(2):486-94. PubMed ID: 26023967
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Long-Term Observations of Nitrogen and Phosphorus Export in Paired-Agricultural Watersheds under Controlled and Conventional Tile Drainage.
    Sunohara MD; Gottschall N; Wilkes G; Craiovan E; Topp E; Que Z; Seidou O; Frey SK; Lapen DR
    J Environ Qual; 2015 Sep; 44(5):1589-604. PubMed ID: 26436276
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent trends in nutrient and sediment loading to coastal areas of the conterminous U.S.: Insights and global context.
    Oelsner GP; Stets EG
    Sci Total Environ; 2019 Mar; 654():1225-1240. PubMed ID: 30841397
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Characteristics of nitrogen and phosphorus runoff losses from croplands with different planting patterns in a riverine plain area of Zhejiang Province, East China].
    Zhang MK; Wang Y; Huang C
    Ying Yong Sheng Tai Xue Bao; 2011 Dec; 22(12):3211-20. PubMed ID: 22384589
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A spatial analysis of phosphorus in the Mississippi river basin.
    Jacobson LM; David MB; Drinkwater LE
    J Environ Qual; 2011; 40(3):931-41. PubMed ID: 21546679
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluating the Impact of Legacy P and Agricultural Conservation Practices on Nutrient Loads from the Maumee River Watershed.
    Muenich RL; Kalcic M; Scavia D
    Environ Sci Technol; 2016 Aug; 50(15):8146-54. PubMed ID: 27322563
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spring nitrate flux in the Mississippi River Basin: a landscape model with conservation applications.
    Booth MS; Campbell C
    Environ Sci Technol; 2007 Aug; 41(15):5410-8. PubMed ID: 17822110
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Climate-change impacts on hydrology and nutrients in a Danish lowland river basin.
    Andersen HE; Kronvang B; Larsen SE; Hoffmann CC; Jensen TS; Rasmussen EK
    Sci Total Environ; 2006 Jul; 365(1-3):223-37. PubMed ID: 16647104
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessing watershed transport of atrazine and nitrate to evaluate conservation practice effects and advise future monitoring strategies.
    O'Donnell TK
    Environ Manage; 2012 Jan; 49(1):267-84. PubMed ID: 22080428
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Where Have All the Nutrients Gone? Long-Term Decoupling of Inputs and Outputs in the Willamette River Watershed, Oregon, United States.
    Metson GS; Lin J; Harrison JA; Compton JE
    J Geophys Res Biogeosci; 2020 Oct; 125(10):1-16. PubMed ID: 36158138
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Long-Term Mississippi River Trends Expose Shifts in the River Load Response to Watershed Nutrient Balances Between 1975 and 2017.
    Stackpoole S; Sabo R; Falcone J; Sprague L
    Water Resour Res; 2021 Nov; 57(11):e2021WR030318. PubMed ID: 36875793
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluating agricultural best management practices in tile-drained subwatersheds of the Mackinaw River, Illinois.
    Lemke AM; Kirkham KG; Lindenbaum TT; Herbert ME; Tear TH; Perry WL; Herkert JR
    J Environ Qual; 2011; 40(4):1215-28. PubMed ID: 21712591
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.