These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 25602322)
1. Long-term agroecosystem research in the central Mississippi river basin: hyperspectral remote sensing of reservoir water quality. Sudduth KA; Jang GS; Lerch RN; Sadler EJ J Environ Qual; 2015 Jan; 44(1):71-83. PubMed ID: 25602322 [TBL] [Abstract][Full Text] [Related]
2. Hyperspectral sensing for turbid water quality monitoring in freshwater rivers: Empirical relationship between reflectance and turbidity and total solids. Wu JL; Ho CR; Huang CC; Srivastav AL; Tzeng JH; Lin YT Sensors (Basel); 2014 Nov; 14(12):22670-88. PubMed ID: 25460816 [TBL] [Abstract][Full Text] [Related]
3. [Reconstruction of Water Hyperspectral Remote Sensing Reflectance Based on Sparse Representation and Its Application]. Li Y; Li YM; Guo YL; Zhang YL; Zhang YB; Hu YD; Xia Z Huan Jing Ke Xue; 2019 Jan; 40(1):200-210. PubMed ID: 30628276 [TBL] [Abstract][Full Text] [Related]
4. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States. Paciorek CJ; Liu Y; Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153 [TBL] [Abstract][Full Text] [Related]
5. Model for the interpretation of hyperspectral remote-sensing reflectance. Lee Z; Carder KL; Hawes SK; Steward RG; Peacock TG; Davis CO Appl Opt; 1994 Aug; 33(24):5721-32. PubMed ID: 20935974 [TBL] [Abstract][Full Text] [Related]
6. The feasibility of monitoring wilderness lake chemistry with remote sensing methods. Vertucci FA Environ Monit Assess; 1989 Apr; 12(1):59. PubMed ID: 24249059 [TBL] [Abstract][Full Text] [Related]
7. Remote sensing estimation of chlorophyll-a concentration in Taihu Lake considering spatial and temporal variations. Cheng C; Wei Y; Lv G; Xu N Environ Monit Assess; 2019 Jan; 191(2):84. PubMed ID: 30659368 [TBL] [Abstract][Full Text] [Related]
8. Multiplatform optical monitoring of eutrophication in temporally and spatially variable lakes. Vos RJ; Hakvoort JH; Jordans RW; Ibelings BW Sci Total Environ; 2003 Aug; 312(1-3):221-43. PubMed ID: 12873412 [TBL] [Abstract][Full Text] [Related]
9. [Fluorescence peak shift corresponding to high chlorophyll concentrations in inland water]. Duan HT; Ma RH; Zhang YZ; Zhang B Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jan; 29(1):161-4. PubMed ID: 19385229 [TBL] [Abstract][Full Text] [Related]
10. [Research Progress on Remote Sensing Monitoring of Lake Water Quality Parameters]. Wang SM; Qin BQ Huan Jing Ke Xue; 2023 Mar; 44(3):1228-1243. PubMed ID: 36922185 [TBL] [Abstract][Full Text] [Related]
11. Hyperspectral determination of eutrophication for a water supply source via genetic algorithm-partial least squares (GA-PLS) modeling. Song K; Li L; Tedesco LP; Li S; Clercin NA; Hall BE; Li Z; Shi K Sci Total Environ; 2012 Jun; 426():220-32. PubMed ID: 22521166 [TBL] [Abstract][Full Text] [Related]
12. The HydroColor App: Above Water Measurements of Remote Sensing Reflectance and Turbidity Using a Smartphone Camera. Leeuw T; Boss E Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29337917 [TBL] [Abstract][Full Text] [Related]
13. Retrieval of chlorophyll from remote-sensing reflectance in the china seas. He MX; Liu ZS; Du KP; Li LP; Chen R; Carder KL; Lee ZP Appl Opt; 2000 May; 39(15):2467-74. PubMed ID: 18345161 [TBL] [Abstract][Full Text] [Related]
14. Monitoring water quality using proximal remote sensing technology. Sun X; Zhang Y; Shi K; Zhang Y; Li N; Wang W; Huang X; Qin B Sci Total Environ; 2022 Jan; 803():149805. PubMed ID: 34492494 [TBL] [Abstract][Full Text] [Related]
15. [Interpretation of spatial distribution pattern for dissolved inorganic nitrogen concentration in coastal estuary using hyperspectral data]. Zhang D; Xu Y; Zhang Y; Li H Huan Jing Ke Xue; 2010 Jun; 31(6):1435-41. PubMed ID: 20698253 [TBL] [Abstract][Full Text] [Related]
16. On the modeling of hyperspectral remote-sensing reflectance of high-sediment-load waters in the visible to shortwave-infrared domain. Lee Z; Shang S; Lin G; Chen J; Doxaran D Appl Opt; 2016 Mar; 55(7):1738-50. PubMed ID: 26974638 [TBL] [Abstract][Full Text] [Related]
17. Monitor water quality through retrieving water quality parameters from hyperspectral images using graph convolution network with superposition of multi-point effect: A case study in Maozhou River. Zhang Y; Kong X; Deng L; Liu Y J Environ Manage; 2023 Sep; 342():118283. PubMed ID: 37290307 [TBL] [Abstract][Full Text] [Related]
18. An Automatic Stationary Water Color Parameters Observation System for Shallow Waters: Designment and Applications. Li W; Tian L; Guo S; Li J; Sun Z; Zhang L Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31600940 [TBL] [Abstract][Full Text] [Related]
19. [Inversion of Water Quality Parameters Based on UAV Multispectral Images and the OPT-MPP Algorithm]. Huang XX; Ying HT; Xia K; Feng HL; Yang YH; Du XC Huan Jing Ke Xue; 2020 Aug; 41(8):3591-3600. PubMed ID: 33124332 [TBL] [Abstract][Full Text] [Related]
20. [Hyperspectral inversion models on verticillium wilt severity of cotton leaf]. Jing X; Huang WJ; Wang JH; Wang JD; Wang KR Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Dec; 29(12):3348-52. PubMed ID: 20210167 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]