These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 25602410)

  • 21. Field evaluation of a model for predicting nitrogen losses from drained lands.
    Youssef MA; Skaggs RW; Chescheir GM; Gilliam JW
    J Environ Qual; 2006; 35(6):2026-42. PubMed ID: 17071872
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nitrate-nitrogen export: magnitude and patterns from drainage districts to downstream river basins.
    Ikenberry CD; Soupir ML; Schilling KE; Jones CS; Seeman A
    J Environ Qual; 2014 Nov; 43(6):2024-33. PubMed ID: 25602219
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modifying the Soil and Water Assessment Tool to simulate cropland carbon flux: model development and initial evaluation.
    Zhang X; Izaurralde RC; Arnold JG; Williams JR; Srinivasan R
    Sci Total Environ; 2013 Oct; 463-464():810-22. PubMed ID: 23859899
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A SWAT model validation of nested-scale contemporaneous stream flow, suspended sediment and nutrients from a multiple-land-use watershed of the central USA.
    Zeiger SJ; Hubbart JA
    Sci Total Environ; 2016 Dec; 572():232-243. PubMed ID: 27501422
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessment of hydrology and nutrient losses in a changing climate in a subsurface-drained watershed.
    Mehan S; Aggarwal R; Gitau MW; Flanagan DC; Wallace CW; Frankenberger JR
    Sci Total Environ; 2019 Oct; 688():1236-1251. PubMed ID: 31726554
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preferential flow estimates to an agricultural tile drain with implications for glyphosate transport.
    Stone WW; Wilson JT
    J Environ Qual; 2006; 35(5):1825-35. PubMed ID: 16899754
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of accurate baseline representation for three Central Iowa watersheds within a HAWQS-based SWAT analyses.
    Brighenti TM; Gassman PW; Schilling KE; Srinivasan R; Liebman M; Thompson JR
    Sci Total Environ; 2022 Sep; 839():156302. PubMed ID: 35640760
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of the SWAT model to the Xiangjiang river watershed in subtropical central China.
    Luo Q; Li Y; Wang K; Wu J
    Water Sci Technol; 2013; 67(9):2110-6. PubMed ID: 23656956
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SWAT ungauged: Water quality modeling in the Upper Mississippi River Basin.
    Qi J; Zhang X; Yang Q; Srinivasan R; Arnold JG; Li J; Waldholf ST; Cole J
    J Hydrol (Amst); 2020; 584():. PubMed ID: 33627888
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface runoff and tile drainage transport of phosphorus in the midwestern United States.
    Smith DR; King KW; Johnson L; Francesconi W; Richards P; Baker D; Sharpley AN
    J Environ Qual; 2015 Mar; 44(2):495-502. PubMed ID: 26023968
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adapting SWAT hillslope erosion model to predict sediment concentrations and yields in large Basins.
    Vigiak O; Malagó A; Bouraoui F; Vanmaercke M; Poesen J
    Sci Total Environ; 2015 Dec; 538():855-75. PubMed ID: 26356993
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dissolved organic carbon in runoff and tile-drain water under corn and forage fertilized with hog manure.
    Royer I; Angers DA; Chantigny MH; Simard RR; Cluis D
    J Environ Qual; 2007; 36(3):855-63. PubMed ID: 17485717
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrologic and atrazine simulation of the Cedar Creek Watershed using the SWAT model.
    Larose M; Heathman GC; Norton LD; Engel B
    J Environ Qual; 2007; 36(2):521-31. PubMed ID: 17332256
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phosphorus transport in agricultural subsurface drainage: a review.
    King KW; Williams MR; Macrae ML; Fausey NR; Frankenberger J; Smith DR; Kleinman PJ; Brown LC
    J Environ Qual; 2015 Mar; 44(2):467-85. PubMed ID: 26023966
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comprehensive nitrogen budgets for controlled tile drainage fields in eastern ontario, Canada.
    Sunohara MD; Craiovan E; Topp E; Gottschall N; Drury CF; Lapen DR
    J Environ Qual; 2014 Mar; 43(2):617-30. PubMed ID: 25602663
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sensitivity-Based Calibration of the Soil and Water Assessment Tool for Hydrologic Cycle Simulation in the Cong Watershed, Vietnam.
    Anh NV; Fukuda S; Hiramatsu K; Harada M
    Water Environ Res; 2015 Aug; 87(8):735-50. PubMed ID: 26237690
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reducing nitrate loss in tile drainage water with cover crops and water-table management systems.
    Drury CF; Tan CS; Welacky TW; Reynolds WD; Zhang TQ; Oloya TO; McLaughlin NB; Gaynor JD
    J Environ Qual; 2014 Mar; 43(2):587-98. PubMed ID: 25602660
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling water quality to improve agricultural practices and land management in a tunisian catchment using the soil and water assessment tool.
    Aouissi J; Benabdallah S; Chabaâne ZL; Cudennec C
    J Environ Qual; 2014 Jan; 43(1):18-25. PubMed ID: 25602536
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of HSPF and SWAT models performance for runoff and sediment yield prediction.
    Im S; Brannan KM; Mostaghimi S; Kim SM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Sep; 42(11):1561-70. PubMed ID: 17849297
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Navigating the socio-bio-geo-chemistry and engineering of nitrogen management in two illinois tile-drained watersheds.
    David MB; Flint CG; Gentry LE; Dolan MK; Czapar GF; Cooke RA; Lavaire T
    J Environ Qual; 2015 Mar; 44(2):368-81. PubMed ID: 26023956
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.