These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
532 related articles for article (PubMed ID: 25602520)
21. ATR and Rad17 collaborate in modulating Rad9 localisation at sites of DNA damage. Medhurst AL; Warmerdam DO; Akerman I; Verwayen EH; Kanaar R; Smits VA; Lakin ND J Cell Sci; 2008 Dec; 121(Pt 23):3933-40. PubMed ID: 19020305 [TBL] [Abstract][Full Text] [Related]
22. Structural basis for intra- and intermolecular interactions on RAD9 subunit of 9-1-1 checkpoint clamp implies functional 9-1-1 regulation by RHINO. Hara K; Tatsukawa K; Nagata K; Iida N; Hishiki A; Ohashi E; Hashimoto H J Biol Chem; 2024 Mar; 300(3):105751. PubMed ID: 38354779 [TBL] [Abstract][Full Text] [Related]
23. The 9-1-1 DNA clamp subunit RAD1 forms specific interactions with clamp loader RAD17, revealing functional implications for binding-protein RHINO. Hara K; Hishiki A; Hoshino T; Nagata K; Iida N; Sawada Y; Ohashi E; Hashimoto H J Biol Chem; 2023 Apr; 299(4):103061. PubMed ID: 36841485 [TBL] [Abstract][Full Text] [Related]
24. APE2 is required for ATR-Chk1 checkpoint activation in response to oxidative stress. Willis J; Patel Y; Lentz BL; Yan S Proc Natl Acad Sci U S A; 2013 Jun; 110(26):10592-7. PubMed ID: 23754435 [TBL] [Abstract][Full Text] [Related]
25. Conditional inactivation of the DNA damage response gene Hus1 in mouse testis reveals separable roles for components of the RAD9-RAD1-HUS1 complex in meiotic chromosome maintenance. Lyndaker AM; Lim PX; Mleczko JM; Diggins CE; Holloway JK; Holmes RJ; Kan R; Schlafer DH; Freire R; Cohen PE; Weiss RS PLoS Genet; 2013; 9(2):e1003320. PubMed ID: 23468651 [TBL] [Abstract][Full Text] [Related]
26. Human CTC1 promotes TopBP1 stability and CHK1 phosphorylation in response to telomere dysfunction and global replication stress. Ackerson SM; Gable CI; Stewart JA Cell Cycle; 2020 Dec; 19(24):3491-3507. PubMed ID: 33269665 [TBL] [Abstract][Full Text] [Related]
27. Rad9, Rad17, TopBP1 and claspin play essential roles in heat-induced activation of ATR kinase and heat tolerance. Tuul M; Kitao H; Iimori M; Matsuoka K; Kiyonari S; Saeki H; Oki E; Morita M; Maehara Y PLoS One; 2013; 8(2):e55361. PubMed ID: 23383325 [TBL] [Abstract][Full Text] [Related]
28. S-phase sensing of DNA-protein crosslinks triggers TopBP1-independent ATR activation and p53-mediated cell death by formaldehyde. Wong VC; Cash HL; Morse JL; Lu S; Zhitkovich A Cell Cycle; 2012 Jul; 11(13):2526-37. PubMed ID: 22722496 [TBL] [Abstract][Full Text] [Related]
29. RPA70 depletion induces hSSB1/2-INTS3 complex to initiate ATR signaling. Kar A; Kaur M; Ghosh T; Khan MM; Sharma A; Shekhar R; Varshney A; Saxena S Nucleic Acids Res; 2015 May; 43(10):4962-74. PubMed ID: 25916848 [TBL] [Abstract][Full Text] [Related]
30. Direct role for the replication protein treslin (Ticrr) in the ATR kinase-mediated checkpoint response. Hassan BH; Lindsey-Boltz LA; Kemp MG; Sancar A J Biol Chem; 2013 Jun; 288(26):18903-10. PubMed ID: 23696651 [TBL] [Abstract][Full Text] [Related]
31. The Rad4(TopBP1) ATR-activation domain functions in G1/S phase in a chromatin-dependent manner. Lin SJ; Wardlaw CP; Morishita T; Miyabe I; Chahwan C; Caspari T; Schmidt U; Carr AM; Garcia V PLoS Genet; 2012 Jun; 8(6):e1002801. PubMed ID: 22761595 [TBL] [Abstract][Full Text] [Related]
32. Tipin-replication protein A interaction mediates Chk1 phosphorylation by ATR in response to genotoxic stress. Kemp MG; Akan Z; Yilmaz S; Grillo M; Smith-Roe SL; Kang TH; Cordeiro-Stone M; Kaufmann WK; Abraham RT; Sancar A; Unsal-Kaçmaz K J Biol Chem; 2010 May; 285(22):16562-71. PubMed ID: 20233725 [TBL] [Abstract][Full Text] [Related]
33. UV-induced G2 checkpoint depends on p38 MAPK and minimal activation of ATR-Chk1 pathway. Warmerdam DO; Brinkman EK; Marteijn JA; Medema RH; Kanaar R; Smits VA J Cell Sci; 2013 May; 126(Pt 9):1923-30. PubMed ID: 23447674 [TBL] [Abstract][Full Text] [Related]
34. Genotoxin-induced Rad9-Hus1-Rad1 (9-1-1) chromatin association is an early checkpoint signaling event. Roos-Mattjus P; Vroman BT; Burtelow MA; Rauen M; Eapen AK; Karnitz LM J Biol Chem; 2002 Nov; 277(46):43809-12. PubMed ID: 12228248 [TBL] [Abstract][Full Text] [Related]
35. Reconstitution of human claspin-mediated phosphorylation of Chk1 by the ATR (ataxia telangiectasia-mutated and rad3-related) checkpoint kinase. Lindsey-Boltz LA; Serçin O; Choi JH; Sancar A J Biol Chem; 2009 Nov; 284(48):33107-14. PubMed ID: 19828454 [TBL] [Abstract][Full Text] [Related]
36. Disruption of the Rad9/Rad1/Hus1 (9-1-1) complex leads to checkpoint signaling and replication defects. Bao S; Lu T; Wang X; Zheng H; Wang LE; Wei Q; Hittelman WN; Li L Oncogene; 2004 Jul; 23(33):5586-93. PubMed ID: 15184880 [TBL] [Abstract][Full Text] [Related]
37. Menin localizes to chromatin through an ATR-CHK1 mediated pathway after UV-induced DNA damage. Farley SM; Chen G; Guo S; Wang M; A J; Lee F; Lee F; Sawicki M J Surg Res; 2006 Jun; 133(1):29-37. PubMed ID: 16690369 [TBL] [Abstract][Full Text] [Related]
38. Requirement of MTA1 in ATR-mediated DNA damage checkpoint function. Li DQ; Ohshiro K; Khan MN; Kumar R J Biol Chem; 2010 Jun; 285(26):19802-12. PubMed ID: 20427275 [TBL] [Abstract][Full Text] [Related]
39. Importin β-dependent nuclear import of TopBP1 in ATR-Chk1 checkpoint in Xenopus egg extracts. Bai L; Michael WM; Yan S Cell Signal; 2014 May; 26(5):857-67. PubMed ID: 24440306 [TBL] [Abstract][Full Text] [Related]
40. Two distinct modes of ATR activation orchestrated by Rad17 and Nbs1. Shiotani B; Nguyen HD; Håkansson P; Maréchal A; Tse A; Tahara H; Zou L Cell Rep; 2013 May; 3(5):1651-62. PubMed ID: 23684611 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]