These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 25602534)

  • 1. Applications of the SWAT Model Special Section: Overview and Insights.
    Gassman PW; Sadeghi AM; Srinivasan R
    J Environ Qual; 2014 Jan; 43(1):1-8. PubMed ID: 25602534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of Soil and Water Assessment Tool (SWAT) studies of Mediterranean catchments: Applications, feasibility, and future directions.
    Aloui S; Mazzoni A; Elomri A; Aouissi J; Boufekane A; Zghibi A
    J Environ Manage; 2023 Jan; 326(Pt B):116799. PubMed ID: 36413953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling Agricultural Watersheds with the Soil and Water Assessment Tool (SWAT): Calibration and Validation with a Novel Procedure for Spatially Explicit HRUs.
    Teshager AD; Gassman PW; Secchi S; Schoof JT; Misgna G
    Environ Manage; 2016 Apr; 57(4):894-911. PubMed ID: 26616430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SWAT Check: A Screening Tool to Assist Users in the Identification of Potential Model Application Problems.
    White MJ; Harmel RD; Arnold JG; Williams JR
    J Environ Qual; 2014 Jan; 43(1):208-14. PubMed ID: 25602553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soil and Water Assessment Tool model predictions of annual maximum pesticide concentrations in high vulnerability watersheds.
    Winchell MF; Peranginangin N; Srinivasan R; Chen W
    Integr Environ Assess Manag; 2018 May; 14(3):358-368. PubMed ID: 29193759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the impact of field-scale management strategies on sediment transport to the watershed outlet.
    Sommerlot AR; Pouyan Nejadhashemi A; Woznicki SA; Prohaska MD
    J Environ Manage; 2013 Oct; 128():735-48. PubMed ID: 23851319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adapting SWAT hillslope erosion model to predict sediment concentrations and yields in large Basins.
    Vigiak O; Malagó A; Bouraoui F; Vanmaercke M; Poesen J
    Sci Total Environ; 2015 Dec; 538():855-75. PubMed ID: 26356993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing controls on selenium fate and transport in watersheds using the SWAT model.
    Neupane P; Bailey RT; Tavakoli-Kivi S
    Sci Total Environ; 2020 Oct; 738():140318. PubMed ID: 32806359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrologic and atrazine simulation of the Cedar Creek Watershed using the SWAT model.
    Larose M; Heathman GC; Norton LD; Engel B
    J Environ Qual; 2007; 36(2):521-31. PubMed ID: 17332256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of pesticide fate and transport simulation at watershed level using SWAT: Current status and research concerns.
    Wang R; Yuan Y; Yen H; Grieneisen M; Arnold J; Wang D; Wang C; Zhang M
    Sci Total Environ; 2019 Jun; 669():512-526. PubMed ID: 30884273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water and sediment transport modeling of a large temporary river basin in Greece.
    Gamvroudis C; Nikolaidis NP; Tzoraki O; Papadoulakis V; Karalemas N
    Sci Total Environ; 2015 Mar; 508():354-65. PubMed ID: 25497675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A SWAT model validation of nested-scale contemporaneous stream flow, suspended sediment and nutrients from a multiple-land-use watershed of the central USA.
    Zeiger SJ; Hubbart JA
    Sci Total Environ; 2016 Dec; 572():232-243. PubMed ID: 27501422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrated modeling approach for estimating the water quality benefits of conservation practices at the river basin scale.
    Santhi C; Kannan N; White M; Di Luzio M; Arnold JG; Wang X; Williams JR
    J Environ Qual; 2014 Jan; 43(1):177-98. PubMed ID: 25602551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating the capabilities of watershed-scale models in estimating sediment yield at field-scale.
    Sommerlot AR; Nejadhashemi AP; Woznicki SA; Giri S; Prohaska MD
    J Environ Manage; 2013 Sep; 127():228-36. PubMed ID: 23764473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modifying the Soil and Water Assessment Tool to simulate cropland carbon flux: model development and initial evaluation.
    Zhang X; Izaurralde RC; Arnold JG; Williams JR; Srinivasan R
    Sci Total Environ; 2013 Oct; 463-464():810-22. PubMed ID: 23859899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SWAT-SF: A flexible SWAT-based model for watershed-scale water and soil salinity modeling.
    Maleki Tirabadi MS; Banihabib ME; Randhir TO
    J Contam Hydrol; 2022 Jan; 244():103893. PubMed ID: 34861478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT.
    Luo Y; Zhang M
    Environ Pollut; 2009 Dec; 157(12):3370-8. PubMed ID: 19616876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulated wetland conservation-restoration effects on water quantity and quality at watershed scale.
    Wang X; Shang S; Qu Z; Liu T; Melesse AM; Yang W
    J Environ Manage; 2010 Jul; 91(7):1511-25. PubMed ID: 20236754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of the soil and water assessment tool to scale sediment delivery from field to watershed in an agricultural landscape with topographic depressions.
    Almendinger JE; Murphy MS; Ulrich JS
    J Environ Qual; 2014 Jan; 43(1):9-17. PubMed ID: 25602535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of the SWAT model to simulate a watershed with limited available data in the Pampas region, Argentina.
    Romagnoli M; Portapila M; Rigalli A; Maydana G; Burgués M; García CM
    Sci Total Environ; 2017 Oct; 596-597():437-450. PubMed ID: 28454067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.