These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 25602543)

  • 1. Comparison and evaluation of model structures for the simulation of pollution fluxes in a tile-drained river basin.
    Hoang L; van Griensven A; van der Keur P; Refsgaard JC; Troldborg L; Nilsson B; Mynett A
    J Environ Qual; 2014 Jan; 43(1):86-99. PubMed ID: 25602543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the hooghoudt and kirkham tile drain equations in the soil and water assessment tool to simulate tile flow and nitrate-nitrogen.
    Moriasi DN; Gowda PH; Arnold JG; Mulla DJ; Ale S; Steiner JL; Tomer MD
    J Environ Qual; 2013 Nov; 42(6):1699-710. PubMed ID: 25602410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of Soil and Water Assessment Tool and Artificial Neural Network models for hydrologic simulation in different climatic regions of Asia.
    Pradhan P; Tingsanchali T; Shrestha S
    Sci Total Environ; 2020 Jan; 701():134308. PubMed ID: 31704397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving nitrate load simulation of the SWAT model in an extensively tile-drained watershed.
    Kim J; Her Y; Bhattarai R; Jeong H
    Sci Total Environ; 2023 Dec; 904():166331. PubMed ID: 37595899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Simulation of Nitrate Isotopic (δ
    Wang K; Ran N; Lin ZB; Zhou ZH
    Huan Jing Ke Xue; 2018 Jan; 39(1):68-76. PubMed ID: 29965667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying the contribution of tile drainage to basin-scale water yield using analytical and numerical models.
    Schilling KE; Gassman PW; Arenas-Amado A; Jones CS; Arnold J
    Sci Total Environ; 2019 Mar; 657():297-309. PubMed ID: 30543979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin.
    Narula KK; Gosain AK
    Sci Total Environ; 2013 Dec; 468-469 Suppl():S102-16. PubMed ID: 23452999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling water and nutrient fluxes in the Danube River Basin with SWAT.
    Malagó A; Bouraoui F; Vigiak O; Grizzetti B; Pastori M
    Sci Total Environ; 2017 Dec; 603-604():196-218. PubMed ID: 28628812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of accurate baseline representation for three Central Iowa watersheds within a HAWQS-based SWAT analyses.
    Brighenti TM; Gassman PW; Schilling KE; Srinivasan R; Liebman M; Thompson JR
    Sci Total Environ; 2022 Sep; 839():156302. PubMed ID: 35640760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water allocation assessment in low flow river under data scarce conditions: a study of hydrological simulation in Mediterranean basin.
    Bangash RF; Passuello A; Hammond M; Schuhmacher M
    Sci Total Environ; 2012 Dec; 440():60-71. PubMed ID: 22939610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Agriculture and groundwater nitrate contamination in the Seine basin. The STICS-MODCOU modelling chain.
    Ledoux E; Gomez E; Monget JM; Viavattene C; Viennot P; Ducharne A; Benoit M; Mignolet C; Schott C; Mary B
    Sci Total Environ; 2007 Apr; 375(1-3):33-47. PubMed ID: 17275068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrate-nitrogen export: magnitude and patterns from drainage districts to downstream river basins.
    Ikenberry CD; Soupir ML; Schilling KE; Jones CS; Seeman A
    J Environ Qual; 2014 Nov; 43(6):2024-33. PubMed ID: 25602219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SWAT ungauged: Water quality modeling in the Upper Mississippi River Basin.
    Qi J; Zhang X; Yang Q; Srinivasan R; Arnold JG; Li J; Waldholf ST; Cole J
    J Hydrol (Amst); 2020; 584():. PubMed ID: 33627888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting phosphorus and nitrate loads by using SWAT model in Vamanapuram River Basin, Kerala, India.
    Saravanan S; Singh L; Sathiyamurthi S; Sivakumar V; Velusamy S; Shanmugamoorthy M
    Environ Monit Assess; 2022 Dec; 195(1):186. PubMed ID: 36482108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the contribution of point sources and non-point sources to Thachin River water pollution.
    Schaffner M; Bader HP; Scheidegger R
    Sci Total Environ; 2009 Aug; 407(17):4902-15. PubMed ID: 19501876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatiotemporal patterns and source attribution of nitrogen load in a river basin with complex pollution sources.
    Yang X; Liu Q; Fu G; He Y; Luo X; Zheng Z
    Water Res; 2016 May; 94():187-199. PubMed ID: 26945962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inter-comparison of water balance components of river basins draining into selected delta districts of Eastern India.
    Visakh S; Raju PV; Kulkarni SS; Diwakar PG
    Sci Total Environ; 2019 Mar; 654():1258-1269. PubMed ID: 30841399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling riverine nitrate export from an East-Central Illinois watershed using SWAT.
    Hu X; McIsaac GF; David MB; Louwers CA
    J Environ Qual; 2007; 36(4):996-1005. PubMed ID: 17526878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated approach of hydrological and water quality dynamic simulation for anthropogenic disturbance assessment in the Huai River Basin, China.
    Zhai X; Xia J; Zhang Y
    Sci Total Environ; 2017 Nov; 598():749-764. PubMed ID: 28456125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water and sediment transport modeling of a large temporary river basin in Greece.
    Gamvroudis C; Nikolaidis NP; Tzoraki O; Papadoulakis V; Karalemas N
    Sci Total Environ; 2015 Mar; 508():354-65. PubMed ID: 25497675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.