BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 25602614)

  • 1. Why does Asn71 deamidate faster than Asn15 in the enzyme triosephosphate isomerase? Answers from microsecond molecular dynamics simulation and QM/MM free energy calculations.
    Ugur I; Marion A; Aviyente V; Monard G
    Biochemistry; 2015 Feb; 54(6):1429-39. PubMed ID: 25602614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Initiation of the reaction of deamidation in triosephosphate isomerase: investigations by means of molecular dynamics simulations.
    Ugur I; Aviyente V; Monard G
    J Phys Chem B; 2012 Jun; 116(22):6288-301. PubMed ID: 22574817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Terminal marking of triosephosphate isomerase: consequences of deamidation.
    Sun AQ; Yüksel KU; Gracy RW
    Arch Biochem Biophys; 1995 Oct; 322(2):361-8. PubMed ID: 7574709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of active-site modification on the terminal marking deamidation of triosephosphate isomerase.
    Talent JM; Zvaigzne AI; Agrawal N; Gracy RW
    Arch Biochem Biophys; 1997 Apr; 340(1):27-35. PubMed ID: 9126273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Terminal marking of avian triosephosphate isomerases by deamidation and oxidation.
    Zhang Y; Yüksel KU; Gracy RW
    Arch Biochem Biophys; 1995 Feb; 317(1):112-20. PubMed ID: 7872772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between the catalytic center and the primary degradation site of triosephosphate isomerase: effects of active site modification and deamidation.
    Sun AQ; Yüksel KU; Gracy RW
    Arch Biochem Biophys; 1992 Mar; 293(2):382-90. PubMed ID: 1536574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isoforms of chicken triosephosphate isomerase are due to specific oxidation of cysteine126.
    Tang CY; Yüksel KU; Jacobson TM; Gracy RW
    Arch Biochem Biophys; 1990 Nov; 283(1):12-9. PubMed ID: 2241163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of a histidine residue on the C-terminal side of an asparaginyl residue on the rate of deamidation using model pentapeptides.
    Goolcharran C; Stauffer LL; Cleland JL; Borchardt RT
    J Pharm Sci; 2000 Jun; 89(6):818-25. PubMed ID: 10824141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational study on nonenzymatic peptide bond cleavage at asparagine and aspartic acid.
    Catak S; Monard G; Aviyente V; Ruiz-López MF
    J Phys Chem A; 2008 Sep; 112(37):8752-61. PubMed ID: 18714962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formulation considerations for proteins susceptible to asparagine deamidation and aspartate isomerization.
    Wakankar AA; Borchardt RT
    J Pharm Sci; 2006 Nov; 95(11):2321-36. PubMed ID: 16960822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deamidation of asparagine residues: direct hydrolysis versus succinimide-mediated deamidation mechanisms.
    Catak S; Monard G; Aviyente V; Ruiz-López MF
    J Phys Chem A; 2009 Feb; 113(6):1111-20. PubMed ID: 19152321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence and structure determinants of the nonenzymatic deamidation of asparagine and glutamine residues in proteins.
    Wright HT
    Protein Eng; 1991 Feb; 4(3):283-94. PubMed ID: 1649998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural effects of protein aging: terminal marking by deamidation in human triosephosphate isomerase.
    de la Mora-de la Mora I; Torres-Larios A; Enríquez-Flores S; Méndez ST; Castillo-Villanueva A; Gómez-Manzo S; López-Velázquez G; Marcial-Quino J; Torres-Arroyo A; García-Torres I; Reyes-Vivas H; Oria-Hernández J
    PLoS One; 2015; 10(4):e0123379. PubMed ID: 25884638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deamidation of triosephosphate isomerase in reverse micelles: effects of water on catalysis and molecular wear and tear.
    Garza-Ramos G; Tuena de Gomez-Puyou M; Gomez-Puyou A; Yüksel KU; Gracy RW
    Biochemistry; 1994 Jun; 33(22):6960-5. PubMed ID: 8204630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of Deamidation of Asparagine Residues and Effects of Main-Chain Conformation on Activation Energy.
    Kato K; Nakayoshi T; Kurimoto E; Oda A
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32987875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling of structural fluctuations to deamidation reaction in triosephosphate isomerase by Gaussian network model.
    Konuklar FA; Aviyente V; Haliloğlu T
    Proteins; 2006 Mar; 62(3):715-27. PubMed ID: 16323206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Product catalyzes the deamidation of D145N dehalogenase to produce the wild-type enzyme.
    Xiang H; Dong J; Carey PR; Dunaway-Mariano D
    Biochemistry; 1999 Mar; 38(13):4207-13. PubMed ID: 10194337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaction mechanism of deamidation of asparaginyl residues in peptides: effect of solvent molecules.
    Catak S; Monard G; Aviyente V; Ruiz-López MF
    J Phys Chem A; 2006 Jul; 110(27):8354-65. PubMed ID: 16821819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of acidic N + 1 residues on asparagine deamidation rates in solution and in the solid state.
    Li B; Gorman EM; Moore KD; Williams T; Schowen RL; Topp EM; Borchardt RT
    J Pharm Sci; 2005 Mar; 94(3):666-75. PubMed ID: 15668945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of asparagine 330 deamidation in an Fc-fragment of IgG1 using cation exchange chromatography and peptide mapping.
    Zhang YT; Hu J; Pace AL; Wong R; Wang YJ; Kao YH
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Aug; 965():65-71. PubMed ID: 24999246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.