BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 25602620)

  • 1. Structural basis of cofactor-mediated stabilization and substrate recognition of the α-tubulin acetyltransferase αTAT1.
    Yuzawa S; Kamakura S; Hayase J; Sumimoto H
    Biochem J; 2015 Apr; 467(1):103-13. PubMed ID: 25602620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of the α-tubulin acetyltransferase, αTAT1, and implications for tubulin-specific acetylation.
    Friedmann DR; Aguilar A; Fan J; Nachury MV; Marmorstein R
    Proc Natl Acad Sci U S A; 2012 Nov; 109(48):19655-60. PubMed ID: 23071314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and functional characterization of the α-tubulin acetyltransferase MEC-17.
    Davenport AM; Collins LN; Chiu H; Minor PJ; Sternberg PW; Hoelz A
    J Mol Biol; 2014 Jul; 426(14):2605-16. PubMed ID: 24846647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic resolution structure of human α-tubulin acetyltransferase bound to acetyl-CoA.
    Taschner M; Vetter M; Lorentzen E
    Proc Natl Acad Sci U S A; 2012 Nov; 109(48):19649-54. PubMed ID: 23071318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of the histone acetyltransferase Hpa2: A tetrameric member of the Gcn5-related N-acetyltransferase superfamily.
    Angus-Hill ML; Dutnall RN; Tafrov ST; Sternglanz R; Ramakrishnan V
    J Mol Biol; 1999 Dec; 294(5):1311-25. PubMed ID: 10600387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tubulin acetyltransferase αTAT1 destabilizes microtubules independently of its acetylation activity.
    Kalebic N; Martinez C; Perlas E; Hublitz P; Bilbao-Cortes D; Fiedorczuk K; Andolfo A; Heppenstall PA
    Mol Cell Biol; 2013 Mar; 33(6):1114-23. PubMed ID: 23275437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of lysine(100) in the binding of acetylcoenzyme A to human arylamine N-acetyltransferase 1: implications for other acetyltransferases.
    Minchin RF; Butcher NJ
    Biochem Pharmacol; 2015 Apr; 94(3):195-202. PubMed ID: 25660616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The major alpha-tubulin K40 acetyltransferase alphaTAT1 promotes rapid ciliogenesis and efficient mechanosensation.
    Shida T; Cueva JG; Xu Z; Goodman MB; Nachury MV
    Proc Natl Acad Sci U S A; 2010 Dec; 107(50):21517-22. PubMed ID: 21068373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of microtubule lumen entry for the α-tubulin acetyltransferase enzyme αTAT1.
    Coombes C; Yamamoto A; McClellan M; Reid TA; Plooster M; Luxton GW; Alper J; Howard J; Gardner MK
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):E7176-E7184. PubMed ID: 27803321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structures of tubulin acetyltransferase reveal a conserved catalytic core and the plasticity of the essential N terminus.
    Kormendi V; Szyk A; Piszczek G; Roll-Mecak A
    J Biol Chem; 2012 Dec; 287(50):41569-75. PubMed ID: 23105108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of Tetrahymena GCN5 bound to coenzyme A and a histone H3 peptide.
    Rojas JR; Trievel RC; Zhou J; Mo Y; Li X; Berger SL; Allis CD; Marmorstein R
    Nature; 1999 Sep; 401(6748):93-8. PubMed ID: 10485713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural studies of AntD: an N-Acyltransferase involved in the biosynthesis of D-Anthrose.
    Kubiak RL; Holden HM
    Biochemistry; 2012 Jan; 51(4):867-78. PubMed ID: 22220494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the α-tubulin acetyltransferase αTAT1 in the DNA damage response.
    Ryu NM; Kim JM
    J Cell Sci; 2020 Sep; 133(17):. PubMed ID: 32788234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of Helicobacter pylori pseudaminic acid biosynthesis N-acetyltransferase PseH: implications for substrate specificity and catalysis.
    Ud-Din AI; Liu YC; Roujeinikova A
    PLoS One; 2015; 10(3):e0115634. PubMed ID: 25781966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and mechanism of non-histone protein acetyltransferase enzymes.
    Friedmann DR; Marmorstein R
    FEBS J; 2013 Nov; 280(22):5570-81. PubMed ID: 23742047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. αTAT1 is the major α-tubulin acetyltransferase in mice.
    Kalebic N; Sorrentino S; Perlas E; Bolasco G; Martinez C; Heppenstall PA
    Nat Commun; 2013; 4():1962. PubMed ID: 23748901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution structure of the catalytic domain of GCN5 histone acetyltransferase bound to coenzyme A.
    Lin Y; Fletcher CM; Zhou J; Allis CD; Wagner G
    Nature; 1999 Jul; 400(6739):86-9. PubMed ID: 10403255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystallographic analysis of substrate binding and catalysis in dihydrolipoyl transacetylase (E2p).
    Mattevi A; Obmolova G; Kalk KH; Teplyakov A; Hol WG
    Biochemistry; 1993 Apr; 32(15):3887-901. PubMed ID: 8471601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural insights into the substrate binding mechanism of novel ArgA from Mycobacterium tuberculosis.
    Das U; Singh E; Dharavath S; Tiruttani Subhramanyam UK; Pal RK; Vijayan R; Menon S; Kumar S; Gourinath S; Srinivasan A
    Int J Biol Macromol; 2019 Mar; 125():970-978. PubMed ID: 30576731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of αTAT1 and HDAC5 on axonal regeneration in adult neurons.
    Lin S; Sterling NA; Junker IP; Helm CT; Smith GM
    PLoS One; 2017; 12(5):e0177496. PubMed ID: 28505206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.