These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 25602628)
1. In situ surface-enhanced Raman scattering spectroscopy exploring molecular changes of drug-treated cancer cell nucleus. Liang L; Huang D; Wang H; Li H; Xu S; Chang Y; Li H; Yang YW; Liang C; Xu W Anal Chem; 2015 Feb; 87(4):2504-10. PubMed ID: 25602628 [TBL] [Abstract][Full Text] [Related]
2. Nasopharyngeal carcinoma cell screening based on nuclear targeting Surface-Enhanced Raman Scattering (SERS) detection. Zheng M; Ren Y; Jing L; Cheng M; Lin J; Yu Y Anal Chim Acta; 2024 Aug; 1316():342864. PubMed ID: 38969411 [TBL] [Abstract][Full Text] [Related]
3. Observing real-time molecular event dynamics of apoptosis in living cancer cells using nuclear-targeted plasmonically enhanced Raman nanoprobes. Kang B; Austin LA; El-Sayed MA ACS Nano; 2014 May; 8(5):4883-92. PubMed ID: 24708404 [TBL] [Abstract][Full Text] [Related]
4. Tracing the Therapeutic Process of Targeted Aptamer/Drug Conjugate on Cancer Cells by Surface-Enhanced Raman Scattering Spectroscopy. Deng R; Qu H; Liang L; Zhang J; Zhang B; Huang D; Xu S; Liang C; Xu W Anal Chem; 2017 Mar; 89(5):2844-2851. PubMed ID: 28192929 [TBL] [Abstract][Full Text] [Related]
5. Nuclear targeted nanoprobe for single living cell detection by surface-enhanced Raman scattering. Xie W; Wang L; Zhang Y; Su L; Shen A; Tan J; Hu J Bioconjug Chem; 2009 Apr; 20(4):768-73. PubMed ID: 19267459 [TBL] [Abstract][Full Text] [Related]
6. Exploiting the nanoparticle plasmon effect: observing drug delivery dynamics in single cells via Raman/fluorescence imaging spectroscopy. Kang B; Afifi MM; Austin LA; El-Sayed MA ACS Nano; 2013 Aug; 7(8):7420-7. PubMed ID: 23909658 [TBL] [Abstract][Full Text] [Related]
7. In situ monitoring of doxorubicin release from biohybrid nanoparticles modified with antibody and cell-penetrating peptides in breast cancer cells using surface-enhanced Raman spectroscopy. Hossain MK; Cho HY; Kim KJ; Choi JW Biosens Bioelectron; 2015 Sep; 71():300-305. PubMed ID: 25919810 [TBL] [Abstract][Full Text] [Related]
8. "Two-Step" Raman Imaging Technique To Guide Chemo-Photothermal Cancer Therapy. Deng L; Li Q; Yang Y; Omar H; Tang N; Zhang J; Nie Z; Khashab NM Chemistry; 2015 Nov; 21(48):17274-81. PubMed ID: 26275063 [TBL] [Abstract][Full Text] [Related]
9. Tracking the intracellular drug release from graphene oxide using surface-enhanced Raman spectroscopy. Huang J; Zong C; Shen H; Cao Y; Ren B; Zhang Z Nanoscale; 2013 Nov; 5(21):10591-8. PubMed ID: 24057012 [TBL] [Abstract][Full Text] [Related]
10. SERS-fluorescence joint spectral encoded magnetic nanoprobes for multiplex cancer cell separation. Wang Z; Zong S; Chen H; Wang C; Xu S; Cui Y Adv Healthc Mater; 2014 Nov; 3(11):1889-97. PubMed ID: 24862088 [TBL] [Abstract][Full Text] [Related]
11. Gold nanostars for efficient in vitro and in vivo real-time SERS detection and drug delivery via plasmonic-tunable Raman/FTIR imaging. Tian F; Conde J; Bao C; Chen Y; Curtin J; Cui D Biomaterials; 2016 Nov; 106():87-97. PubMed ID: 27552319 [TBL] [Abstract][Full Text] [Related]
12. Selective analysis of antitumor drug interaction with living cancer cells as probed by surface-enhanced Raman spectroscopy. Nabiev IR; Morjani H; Manfait M Eur Biophys J; 1991; 19(6):311-6. PubMed ID: 1915156 [TBL] [Abstract][Full Text] [Related]
14. Nanostructured SERS-electrochemical biosensors for testing of anticancer drug interactions with DNA. Ilkhani H; Hughes T; Li J; Zhong CJ; Hepel M Biosens Bioelectron; 2016 Jun; 80():257-264. PubMed ID: 26851584 [TBL] [Abstract][Full Text] [Related]
15. Ex situ and in situ surface-enhanced Raman spectroscopy for macromolecular profiles of cell nucleus. Shen Y; Yang L; Liang L; Li Z; Zhang J; Shi W; Liang C; Xu W; Xu S Anal Bioanal Chem; 2019 Sep; 411(23):6021-6029. PubMed ID: 31289898 [TBL] [Abstract][Full Text] [Related]
16. 3D SERS (surface enhanced Raman scattering) imaging of intracellular pathways. Huang KC; Bando K; Ando J; Smith NI; Fujita K; Kawata S Methods; 2014 Jul; 68(2):348-53. PubMed ID: 24556553 [TBL] [Abstract][Full Text] [Related]
17. Multifunctional DNA-gold nanoparticles for targeted doxorubicin delivery. Alexander CM; Hamner KL; Maye MM; Dabrowiak JC Bioconjug Chem; 2014 Jul; 25(7):1261-71. PubMed ID: 24911830 [TBL] [Abstract][Full Text] [Related]
18. A One-Two-Three Multifunctional System for Enhanced Imaging and Detection of Intracellular MicroRNA and Chemogene Therapy. Liu X; Wang X; Ye S; Li R; Li H ACS Appl Mater Interfaces; 2021 Jun; 13(24):27825-27835. PubMed ID: 34124898 [TBL] [Abstract][Full Text] [Related]
19. Targeting nano drug delivery to cancer cells using tunable, multi-layer, silver-decorated gold nanorods. Nima ZA; Alwbari AM; Dantuluri V; Hamzah RN; Sra N; Motwani P; Arnaoutakis K; Levy RA; Bohliqa AF; Nedosekin D; Zharov VP; Makhoul I; Biris AS J Appl Toxicol; 2017 Dec; 37(12):1370-1378. PubMed ID: 28730725 [TBL] [Abstract][Full Text] [Related]
20. Ligand-directed reduction-sensitive shell-sheddable biodegradable micelles actively deliver doxorubicin into the nuclei of target cancer cells. Zhong Y; Yang W; Sun H; Cheng R; Meng F; Deng C; Zhong Z Biomacromolecules; 2013 Oct; 14(10):3723-30. PubMed ID: 23998942 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]