BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 25602696)

  • 21. Effects of oxygen on the adsorption/oxidation of aqueous Sb(III) by Fe-loaded biochar: An X-ray absorption spectroscopy study.
    Dong Z; Zhou J; Huang T; Yan Z; Liu X; Jia X; Zhou W; Li W; Finfrock YZ; Wang X; Liu P
    Sci Total Environ; 2022 Nov; 846():157414. PubMed ID: 35850325
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antimony sorption at gibbsite-water interface.
    Rakshit S; Sarkar D; Punamiya P; Datta R
    Chemosphere; 2011 Jul; 84(4):480-3. PubMed ID: 21481912
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Removal of Antimonite (Sb(III)) and Antimonate (Sb(V)) from Aqueous Solution Using Carbon Nanofibers That Are Decorated with Zirconium Oxide (ZrO2).
    Luo J; Luo X; Crittenden J; Qu J; Bai Y; Peng Y; Li J
    Environ Sci Technol; 2015 Sep; 49(18):11115-24. PubMed ID: 26301862
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low-Molecular-Weight Organic Acid Complexation Affects Antimony(III) Adsorption by Granular Ferric Hydroxide.
    Li X; Reich T; Kersten M; Jing C
    Environ Sci Technol; 2019 May; 53(9):5221-5229. PubMed ID: 30969111
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of biochar, natural iron oxides, and nanomaterials as soil amendments for immobilizing metals in shooting range soil.
    Rajapaksha AU; Ahmad M; Vithanage M; Kim KR; Chang JY; Lee SS; Ok YS
    Environ Geochem Health; 2015 Dec; 37(6):931-42. PubMed ID: 25794596
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removal of antimonite and antimonate in aqueous solution by mugwort biochar modified by Acidithiobacillus ferrooxidans after pyrolysis.
    Liu X; Xin S; Wang B; Yuan Y; Chu J; He Y; Zhang X; Wang S
    Bioresour Technol; 2023 Jul; 380():129113. PubMed ID: 37137450
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Complexation of Antimony with Natural Organic Matter: Performance Evaluation during Coagulation-Flocculation Process.
    Inam MA; Khan R; Park DR; Khan S; Uddin A; Yeom IT
    Int J Environ Res Public Health; 2019 Mar; 16(7):. PubMed ID: 30934698
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adsorption of antimony(V) onto Mn(II)-enriched surfaces of manganese-oxide and FeMn binary oxide.
    Liu R; Xu W; He Z; Lan H; Liu H; Qu J; Prasai T
    Chemosphere; 2015 Nov; 138():616-24. PubMed ID: 26218341
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetics and mechanisms of hydrogen sulfide adsorption by biochars.
    Shang G; Shen G; Liu L; Chen Q; Xu Z
    Bioresour Technol; 2013 Apr; 133():495-9. PubMed ID: 23455220
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphorus recovery by core-shell γ-Al
    Cui Q; Xu J; Wang W; Tan L; Cui Y; Wang T; Li G; She D; Zheng J
    Sci Total Environ; 2020 Aug; 729():138892. PubMed ID: 32360908
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Insights into Antimony Adsorption on {001} TiO
    Yan L; Song J; Chan T; Jing C
    Environ Sci Technol; 2017 Jun; 51(11):6335-6341. PubMed ID: 28513146
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigating the binding properties between antimony(V) and dissolved organic matter (DOM) under different pH conditions during the soil sorption process using fluorescence and FTIR spectroscopy.
    Fan Y; Zheng C; Huo A; Wang Q; Shen Z; Xue Z; He C
    Ecotoxicol Environ Saf; 2019 Oct; 181():34-42. PubMed ID: 31158721
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of nano-silica and biogenic iron (oxyhydr)oxides composites mediated by iron oxidizing bacteria to remove antimonite and antimonate from aqueous solution: Performance and mechanisms.
    Xu R; Li Q; Nan X; Yang Y; Xu B; Li K; Wang L; Zhang Y; Jiang T
    J Hazard Mater; 2022 Jan; 422():126821. PubMed ID: 34419843
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Immobilization mechanism of antimony by applying zirconium-manganese oxide in soil.
    Rong Q; Nong X; Zhang C; Zhong K; Zhao H
    Sci Total Environ; 2022 Jun; 823():153435. PubMed ID: 35092780
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of bamboo biochar on soybean root nodulation in multi-elements contaminated soils.
    Wang C; Alidoust D; Yang X; Isoda A
    Ecotoxicol Environ Saf; 2018 Apr; 150():62-69. PubMed ID: 29268116
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lead sorptive removal using magnetic and nonmagnetic fast pyrolysis energy cane biochars.
    Mohan D; Singh P; Sarswat A; Steele PH; Pittman CU
    J Colloid Interface Sci; 2015 Jun; 448():238-50. PubMed ID: 25744855
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of ball milling on the physicochemical and sorptive properties of biochar: Experimental observations and governing mechanisms.
    Lyu H; Gao B; He F; Zimmerman AR; Ding C; Huang H; Tang J
    Environ Pollut; 2018 Feb; 233():54-63. PubMed ID: 29053998
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Removal efficiency of As(V) and Sb(III) in contaminated neutral drainage by Fe-loaded biochar.
    Calugaru IL; Neculita CM; Genty T; Zagury GJ
    Environ Sci Pollut Res Int; 2019 Mar; 26(9):9322-9332. PubMed ID: 30721440
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Removal of hexavalent chromium upon interaction with biochar under acidic conditions: mechanistic insights and application.
    Choudhary B; Paul D; Singh A; Gupta T
    Environ Sci Pollut Res Int; 2017 Jul; 24(20):16786-16797. PubMed ID: 28567678
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient removal of antimonate and antimonite by a novel lanthanum-manganese binary oxide: Performance and mechanism.
    Zhang C; Wu M; Wu K; Li H; Zhang G
    J Hazard Mater; 2023 Jan; 442():130132. PubMed ID: 36303357
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.