These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 25602813)

  • 21. Ligand effects on nitrate reduction by zero-valent iron: Role of surface complexation.
    Song X; Chen Z; Wang X; Zhang S
    Water Res; 2017 May; 114():218-227. PubMed ID: 28249213
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dissolved Selenium(VI) Removal by Zero-Valent Iron under Oxic Conditions: Influence of Sulfate and Nitrate.
    Das S; Lindsay MBJ; Essilfie-Dughan J; Hendry MJ
    ACS Omega; 2017 Apr; 2(4):1513-1522. PubMed ID: 31457519
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Removal of nitrate and hexavalent uranium from groundwater by sequential treatment in bioreactors packed with elemental sulfur and zero-valent iron.
    Luna-Velasco A; Sierra-Alvarez R; Castro B; Field JA
    Biotechnol Bioeng; 2010 Dec; 107(6):933-42. PubMed ID: 20661908
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nitrate reduction using nanosized zero-valent iron supported by polystyrene resins: role of surface functional groups.
    Jiang Z; Lv L; Zhang W; Du Q; Pan B; Yang L; Zhang Q
    Water Res; 2011 Mar; 45(6):2191-8. PubMed ID: 21316071
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reduction of nitrate by zero valent iron (ZVI)-based materials: A review.
    Liu Y; Wang J
    Sci Total Environ; 2019 Jun; 671():388-403. PubMed ID: 30933795
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reduction of trichloroethylene and nitrate by zero-valent iron with peat.
    Min JE; Kim M; Pardue JH; Park JW
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Feb; 43(2):144-53. PubMed ID: 18172806
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pressurized CO2/zero valent iron system for nitrate removal.
    Li CW; Chen YM; Yen WS
    Chemosphere; 2007 Jun; 68(2):310-6. PubMed ID: 17280698
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetics of RDX degradation by zero-valent iron (ZVI).
    Wanaratna P; Christodoulatos C; Sidhoum M
    J Hazard Mater; 2006 Aug; 136(1):68-74. PubMed ID: 16386362
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphate removal from aqueous solution using ZVI/sand bed reactor: Behavior and mechanism.
    Sleiman N; Deluchat V; Wazne M; Mallet M; Courtin-Nomade A; Kazpard V; Baudu M
    Water Res; 2016 Aug; 99():56-65. PubMed ID: 27135373
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Performance and mechanism of Cr(VI) removal by zero-valent iron loaded onto expanded graphite.
    Xu C; Yang W; Liu W; Sun H; Jiao C; Lin AJ
    J Environ Sci (China); 2018 May; 67():14-22. PubMed ID: 29778146
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effects of flow rate and concentration on nitrobenzene removal in abiotic and biotic zero-valent iron columns.
    Yin W; Wu J; Huang W; Li Y; Jiang G
    Sci Total Environ; 2016 Aug; 560-561():12-8. PubMed ID: 27093118
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advantages of low pH and limited oxygenation in arsenite removal from water by zero-valent iron.
    Klas S; Kirk DW
    J Hazard Mater; 2013 May; 252-253():77-82. PubMed ID: 23500792
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Zero-valent iron-activated persulfate oxidation of a commercial alkyl phenol polyethoxylate.
    Temiz K; Olmez-Hanci T; Arslan-Alaton I
    Environ Technol; 2016; 37(14):1757-67. PubMed ID: 26797469
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reductive removal of selenate by zero-valent iron: The roles of aqueous Fe(2+) and corrosion products, and selenate removal mechanisms.
    Tang C; Huang YH; Zeng H; Zhang Z
    Water Res; 2014 Dec; 67():166-74. PubMed ID: 25269108
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetics of nitrate and perchlorate removal and biofilm stratification in an ion exchange membrane bioreactor.
    Ricardo AR; Carvalho G; Velizarov S; Crespo JG; Reis MA
    Water Res; 2012 Sep; 46(14):4556-68. PubMed ID: 22748328
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetics and mechanisms of pH-dependent selenite removal by zero valent iron.
    Liang L; Yang W; Guan X; Li J; Xu Z; Wu J; Huang Y; Zhang X
    Water Res; 2013 Oct; 47(15):5846-55. PubMed ID: 23899877
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Arsenate removal by zero valent iron: batch and column tests.
    Biterna M; Arditsoglou A; Tsikouras E; Voutsa D
    J Hazard Mater; 2007 Nov; 149(3):548-52. PubMed ID: 17689184
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The specific reactive surface area of granular zero-valent iron in metal contaminant removal: Column experiments and modelling.
    Statham TM; Mason LR; Mumford KA; Stevens GW
    Water Res; 2015 Jun; 77():24-34. PubMed ID: 25839833
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Removal of EDTA from low pH printed-circuit board wastewater in a fluidized zero valent iron reactor.
    Chen SS; Hsu HD; Lin YJ; Chin PY
    Water Sci Technol; 2008; 58(3):661-7. PubMed ID: 18725736
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arsenic removal with zero-valent iron filters in Burkina Faso: Field and laboratory insights.
    Bretzler A; Nikiema J; Lalanne F; Hoffmann L; Biswakarma J; Siebenaller L; Demange D; Schirmer M; Hug SJ
    Sci Total Environ; 2020 Oct; 737():139466. PubMed ID: 32559562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.