These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 25602923)

  • 1. Recovery of ammonia from swine manure using gas-permeable membranes: effect of aeration.
    García-González MC; Vanotti MB; Szogi AA
    J Environ Manage; 2015 Apr; 152():19-26. PubMed ID: 25602923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing recovery of ammonia from swine manure anaerobic digester effluent using gas-permeable membrane technology.
    Dube PJ; Vanotti MB; Szogi AA; García-González MC
    Waste Manag; 2016 Mar; 49():372-377. PubMed ID: 26739456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of ammonia from swine manure using gas-permeable membranes: effect of waste strength and pH.
    Garcia-González MC; Vanotti MB
    Waste Manag; 2015 Apr; 38():455-61. PubMed ID: 25687948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen recovery from wastewater using gas-permeable membranes: Impact of inorganic carbon content and natural organic matter.
    Daguerre-Martini S; Vanotti MB; Rodriguez-Pastor M; Rosal A; Moral R
    Water Res; 2018 Jun; 137():201-210. PubMed ID: 29550723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and evaluation of a full-scale spray scrubber for ammonia recovery and production of nitrogen fertilizer at poultry facilities.
    Hadlocon LJ; Manuzon RB; Zhao L
    Environ Technol; 2015; 36(1-4):405-16. PubMed ID: 25518983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of ammonia and phosphate minerals from swine wastewater using gas-permeable membranes.
    Vanotti MB; Dube PJ; Szogi AA; García-González MC
    Water Res; 2017 Apr; 112():137-146. PubMed ID: 28157602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential of aeration flow rate and bio-char addition to reduce greenhouse gas and ammonia emissions during manure composting.
    Chowdhury MA; de Neergaard A; Jensen LS
    Chemosphere; 2014 Feb; 97():16-25. PubMed ID: 24210550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substituting organic manure for compound fertilizer increases yield and decreases NH
    Zhang J; Zhuang M; Shan N; Zhao Q; Li H; Wang L
    Sci Total Environ; 2019 Jun; 670():1184-1189. PubMed ID: 31018434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing the isotopic composition of atmospheric ammonia emission sources using passive samplers and a combined oxidation-bacterial denitrifier approach.
    Felix JD; Elliott EM; Gish TJ; McConnell LL; Shaw SL
    Rapid Commun Mass Spectrom; 2013 Oct; 27(20):2239-46. PubMed ID: 24019189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of aeration on CH4, N2O and NH3 emissions during aerobic composting of a chicken manure and high C/N waste mixture.
    Shen Y; Ren L; Li G; Chen T; Guo R
    Waste Manag; 2011 Jan; 31(1):33-8. PubMed ID: 20888749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-disturbance manure incorporation effects on ammonia and nitrate loss.
    Dell CJ; Kleinman PJ; Schmidt JP; Beegle DB
    J Environ Qual; 2012; 41(3):928-37. PubMed ID: 22565274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of biofuel production on swine farm methane and ammonia emissions.
    Harper LA; Flesch TK; Weaver KH; Wilson JD
    J Environ Qual; 2010; 39(6):1984-92. PubMed ID: 21284295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of ammonia from poultry litter using flat gas permeable membranes.
    Rothrock MJ; Szögi AA; Vanotti MB
    Waste Manag; 2013 Jun; 33(6):1531-8. PubMed ID: 23571072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of integrated ammonia recovery technology and nutrient status with an in-vessel composting process for swine manure.
    Kim JK; Lee DJ; Ravindran B; Jeong KH; Wong JW; Selvam A; Karthikeyan OP; Kwag JH
    Bioresour Technol; 2017 Dec; 245(Pt A):365-371. PubMed ID: 28898832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains: a meta-analysis and integrated assessment.
    Hou Y; Velthof GL; Oenema O
    Glob Chang Biol; 2015 Mar; 21(3):1293-312. PubMed ID: 25330119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gaseous nitrogen emissions and forage nitrogen uptake on soils fertilized with raw and treated swine manure.
    Chantigny MH; Angers DA; Rochette P; Bélanger G; Massé D; Côté D
    J Environ Qual; 2007; 36(6):1864-72. PubMed ID: 17965389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing the Performance of Gas-Permeable Membranes as an Ammonia Recovery Strategy from Anaerobically Digested Dairy Manure.
    Fillingham M; VanderZaag A; Singh J; Burtt S; Crolla A; Kinsley C; MacDonald JD
    Membranes (Basel); 2017 Oct; 7(4):. PubMed ID: 28991162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrous oxide and ammonia fluxes in a soybean field irrigated with swine effluent.
    Sharpe RR; Harper LA
    J Environ Qual; 2002; 31(2):524-32. PubMed ID: 11931443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Management strategy impacts on ammonia volatilization from swine manure.
    Panetta DM; Powers WJ; Lorimor JC
    J Environ Qual; 2005; 34(3):1119-30. PubMed ID: 15888898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Impacts of different aeration modes on nutrients conservation during swine manure composting with magnesium salt addition].
    Yang Y; Wei YS; Liu JX
    Huan Jing Ke Xue; 2009 Apr; 30(4):1238-43. PubMed ID: 19545036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.