These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

594 related articles for article (PubMed ID: 25603118)

  • 1. Identity elements for the aminoacylation of metazoan mitochondrial tRNA(Arg) have been widely conserved throughout evolution and ensure the fidelity of the AGR codon reassignment.
    Igloi GL; Leisinger AK
    RNA Biol; 2014; 11(10):1313-23. PubMed ID: 25603118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional idiosyncrasies of tRNA isoacceptors in cognate and noncognate aminoacylation systems.
    Fender A; Sissler M; Florentz C; Giegé R
    Biochimie; 2004 Jan; 86(1):21-9. PubMed ID: 14987797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary Adjustment of tRNA Identity Rules in Bacillariophyta for Recognition by an Aminoacyl-tRNA Synthetase Adds a Facet to the Origin of Diatoms.
    Igloi GL
    J Mol Evol; 2022 Apr; 90(2):215-226. PubMed ID: 35325255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yeast mitochondrial threonyl-tRNA synthetase recognizes tRNA isoacceptors by distinct mechanisms and promotes CUN codon reassignment.
    Ling J; Peterson KM; Simonović I; Cho C; Söll D; Simonović M
    Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3281-6. PubMed ID: 22343532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Enzymatic Paradox of Yeast Arginyl-tRNA Synthetase: Exclusive Arginine Transfer Controlled by a Flexible Mechanism of tRNA Recognition.
    McShane A; Hok E; Tomberlin J; Eriani G; Geslain R
    PLoS One; 2016; 11(2):e0148460. PubMed ID: 26844776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrimination among tRNAs intermediate in glutamate and glutamine acceptor identity.
    Rogers KC; Söll D
    Biochemistry; 1993 Dec; 32(51):14210-9. PubMed ID: 7505112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A yeast arginine specific tRNA is a remnant aspartate acceptor.
    Fender A; Geslain R; Eriani G; Giegé R; Sissler M; Florentz C
    Nucleic Acids Res; 2004; 32(17):5076-86. PubMed ID: 15452274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mistranslating the genetic code with leucine in yeast and mammalian cells.
    Davey-Young J; Hasan F; Tennakoon R; Rozik P; Moore H; Hall P; Cozma E; Genereaux J; Hoffman KS; Chan PP; Lowe TM; Brandl CJ; O'Donoghue P
    RNA Biol; 2024 Jan; 21(1):1-23. PubMed ID: 38629491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of the mitochondrial genetic code. I. Origin of AGR serine and stop codons in metazoan mitochondria.
    Osawa S; Ohama T; Jukes TH; Watanabe K
    J Mol Evol; 1989 Sep; 29(3):202-7. PubMed ID: 2506356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unilateral aminoacylation specificity between bovine mitochondria and eubacteria.
    Kumazawa Y; Himeno H; Miura K; Watanabe K
    J Biochem; 1991 Mar; 109(3):421-7. PubMed ID: 1880129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arginine aminoacylation identity is context-dependent and ensured by alternate recognition sets in the anticodon loop of accepting tRNA transcripts.
    Sissler M; Giegé R; Florentz C
    EMBO J; 1996 Sep; 15(18):5069-76. PubMed ID: 8890180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of identity elements on the aminoacylation of tRNA(Arg) by plant and Escherichia coli arginyl-tRNA synthetases.
    Aldinger CA; Leisinger AK; Igloi GL
    FEBS J; 2012 Oct; 279(19):3622-3638. PubMed ID: 22831759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translocation within the acceptor helix of a major tRNA identity determinant.
    Lovato MA; Chihade JW; Schimmel P
    EMBO J; 2001 Sep; 20(17):4846-53. PubMed ID: 11532948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The accuracy of aminoacylation--ensuring the fidelity of the genetic code.
    Söll D
    Experientia; 1990 Dec; 46(11-12):1089-96. PubMed ID: 2253707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The RNA sequence context defines the mechanistic routes by which yeast arginyl-tRNA synthetase charges tRNA.
    Sissler M; Giegé R; Florentz C
    RNA; 1998 Jun; 4(6):647-57. PubMed ID: 9622124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A yeast knockout strain to discriminate between active and inactive tRNA molecules.
    Geslain R; Martin F; Camasses A; Eriani G
    Nucleic Acids Res; 2003 Aug; 31(16):4729-37. PubMed ID: 12907713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emergence of the universal genetic code imprinted in an RNA record.
    Hohn MJ; Park HS; O'Donoghue P; Schnitzbauer M; Söll D
    Proc Natl Acad Sci U S A; 2006 Nov; 103(48):18095-100. PubMed ID: 17110438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the origin of the genetic code: signatures of its primordial complementarity in tRNAs and aminoacyl-tRNA synthetases.
    Rodin SN; Rodin AS
    Heredity (Edinb); 2008 Apr; 100(4):341-55. PubMed ID: 18322459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limited set of amino acid residues in a class Ia aminoacyl-tRNA synthetase is crucial for tRNA binding.
    Geslain R; Bey G; Cavarelli J; Eriani G
    Biochemistry; 2003 Dec; 42(51):15092-101. PubMed ID: 14690419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. tRNA aminoacylation by arginyl-tRNA synthetase: induced conformations during substrates binding.
    Delagoutte B; Moras D; Cavarelli J
    EMBO J; 2000 Nov; 19(21):5599-610. PubMed ID: 11060012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.