These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 25603143)
1. Agar-agar entrapment increases the stability of endo-β-1,4-xylanase for repeated biodegradation of xylan. Bibi Z; Shahid F; Ul Qader SA; Aman A Int J Biol Macromol; 2015 Apr; 75():121-7. PubMed ID: 25603143 [TBL] [Abstract][Full Text] [Related]
2. Immobilization of β-1,4-xylanase isolated from Bacillus licheniformis S3. Irfan M; Kiran J; Ayubi S; Ullah A; Rana QUA; Khan S; Hasan F; Badshah M; Shah AA J Basic Microbiol; 2020 Jul; 60(7):600-612. PubMed ID: 32363591 [TBL] [Abstract][Full Text] [Related]
3. Calcium alginate matrix increases the stability and recycling capability of immobilized endo-β-1,4-xylanase from Geobacillus stearothermophilus KIBGE-IB29. Bibi Z; Qader SA; Aman A Extremophiles; 2015 Jul; 19(4):819-27. PubMed ID: 26001519 [TBL] [Abstract][Full Text] [Related]
4. Biochemical characterization of the xylan hydrolysis profile of the extracellular endo-xylanase from Geobacillus thermodenitrificans T12. Daas MJA; Martínez PM; van de Weijer AHP; van der Oost J; de Vos WM; Kabel MA; van Kranenburg R BMC Biotechnol; 2017 May; 17(1):44. PubMed ID: 28521816 [TBL] [Abstract][Full Text] [Related]
5. Immobilization of xylanase from Bacillus pumilus strain MK001 and its application in production of xylo-oligosaccharides. Kapoor M; Kuhad RC Appl Biochem Biotechnol; 2007 Aug; 142(2):125-38. PubMed ID: 18025574 [TBL] [Abstract][Full Text] [Related]
6. Immobilization of xylanase on modified grafted alginate polyethyleneimine bead based on impact of sodium cation effect. Mostafa FA; El Aty AAA; Hassan ME; Awad GEA Int J Biol Macromol; 2019 Nov; 140():1284-1295. PubMed ID: 31465802 [TBL] [Abstract][Full Text] [Related]
7. Improved enzyme properties upon glutaraldehyde cross-linking of alginate entrapped xylanase from Bacillus licheniformis. Kumar S; Haq I; Prakash J; Raj A Int J Biol Macromol; 2017 May; 98():24-33. PubMed ID: 28130131 [TBL] [Abstract][Full Text] [Related]
9. Immobilization of Aspergillus niger xylanase on chitosan using dialdehyde starch as a coupling agent. Chen H; Liu L; Lv S; Liu X; Wang M; Song A; Jia X Appl Biochem Biotechnol; 2010 Sep; 162(1):24-32. PubMed ID: 19823778 [TBL] [Abstract][Full Text] [Related]
10. Catalytic properties of the immobilized Aspergillus tamarii xylanase. Gouda MK; Abdel-Naby MA Microbiol Res; 2002; 157(4):275-81. PubMed ID: 12501991 [TBL] [Abstract][Full Text] [Related]
11. Cloning, overexpression, and characterization of a novel alkali-thermostable xylanase from Geobacillus sp. WBI. Mitra S; Mukhopadhyay BC; Mandal AR; Arukha AP; Chakrabarty K; Das GK; Chakrabartty PK; Biswas SR J Basic Microbiol; 2015 Apr; 55(4):527-37. PubMed ID: 25404211 [TBL] [Abstract][Full Text] [Related]
12. Immobilization of the extracellular recombinant Lucky9 xylanase from Bacillus subtilis enhances activity at high temperature and pH. Ding SS; Zhu JP; Wang Y; Wu B; Zhao Z FEBS Open Bio; 2020 Dec; 10(12):2733-2739. PubMed ID: 33091216 [TBL] [Abstract][Full Text] [Related]
13. Production of xylooligosaccharides by immobilized His-tagged recombinant xylanase from Penicillium occitanis on nickel-chelate Eupergit C. Driss D; Haddar A; Ghorbel R; Chaabouni SE Appl Biochem Biotechnol; 2014 Jul; 173(6):1405-18. PubMed ID: 24801404 [TBL] [Abstract][Full Text] [Related]
14. C-Terminal proline-rich sequence broadens the optimal temperature and pH ranges of recombinant xylanase from Geobacillus thermodenitrificans C5. Irfan M; Guler HI; Ozer A; Sapmaz MT; Belduz AO; Hasan F; Shah AA Enzyme Microb Technol; 2016 Sep; 91():34-41. PubMed ID: 27444327 [TBL] [Abstract][Full Text] [Related]
15. Xylanase immobilization on modified superparamagnetic graphene oxide nanocomposite: Effect of PEGylation on activity and stability. Mehnati-Najafabadi V; Taheri-Kafrani A; Bordbar AK Int J Biol Macromol; 2018 Feb; 107(Pt A):418-425. PubMed ID: 28888544 [TBL] [Abstract][Full Text] [Related]
16. Continuous degradation of maltose: improvement in stability and catalytic properties of maltase (α-glucosidase) through immobilization using agar-agar gel as a support. Nawaz MA; Karim A; Aman A; Marchetti R; Qader SA; Molinaro A Bioprocess Biosyst Eng; 2015 Apr; 38(4):631-8. PubMed ID: 25326060 [TBL] [Abstract][Full Text] [Related]
17. Characterization of a purified thermostable xylanase from Caldicoprobacter algeriensis sp. nov. strain TH7C1(T). Amel BD; Nawel B; Khelifa B; Mohammed G; Manon J; Salima KG; Farida N; Hocine H; Bernard O; Jean-Luc C; Marie-Laure F Carbohydr Res; 2016 Jan; 419():60-8. PubMed ID: 26687892 [TBL] [Abstract][Full Text] [Related]
18. Immobilization of levan-xylanase nanohybrid on an alginate bead improves xylanase stability at wide pH and temperature. Jampala P; Preethi M; Ramanujam S; Harish BS; Uppuluri KB; Anbazhagan V Int J Biol Macromol; 2017 Feb; 95():843-849. PubMed ID: 27940337 [TBL] [Abstract][Full Text] [Related]
19. Agar-agar immobilization: An alternative approach for the entrapment of protease to improve the catalytic efficiency, thermal stability and recycling efficiency. Sattar H; Aman A; Qader SAU Int J Biol Macromol; 2018 May; 111():917-922. PubMed ID: 29415415 [TBL] [Abstract][Full Text] [Related]
20. Immobilization of pectin degrading enzyme from Bacillus licheniformis KIBGE IB-21 using agar-agar as a support. Rehman HU; Aman A; Zohra RR; Qader SA Carbohydr Polym; 2014 Feb; 102():622-6. PubMed ID: 24507327 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]