These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 25603490)
1. Artery buckling affects the mechanical stress in atherosclerotic plaques. Sanyal A; Han HC Biomed Eng Online; 2015; 14 Suppl 1(Suppl 1):S4. PubMed ID: 25603490 [TBL] [Abstract][Full Text] [Related]
2. Cap buckling as a potential mechanism of atherosclerotic plaque vulnerability. Abdelali M; Reiter S; Mongrain R; Bertrand M; L'Allier PL; Kritikou EA; Tardif JC J Mech Behav Biomed Mater; 2014 Apr; 32():210-224. PubMed ID: 24491969 [TBL] [Abstract][Full Text] [Related]
3. An experimental-nonlinear finite element study of a balloon expandable stent inside a realistic stenotic human coronary artery to investigate plaque and arterial wall injury. Karimi A; Razaghi R; Shojaei A; Navidbakhsh M Biomed Tech (Berl); 2015 Dec; 60(6):593-602. PubMed ID: 25870956 [TBL] [Abstract][Full Text] [Related]
4. Stress analysis of fracture of atherosclerotic plaques: crack propagation modeling. Rezvani-Sharif A; Tafazzoli-Shadpour M; Kazemi-Saleh D; Sotoudeh-Anvari M Med Biol Eng Comput; 2017 Aug; 55(8):1389-1400. PubMed ID: 27943104 [TBL] [Abstract][Full Text] [Related]
5. Mechanics of Atherosclerotic Plaques: Effect of Heart Rate. Zareh M; Katul R; Mohammadi H Cardiovasc Eng Technol; 2019 Jun; 10(2):344-353. PubMed ID: 30949919 [TBL] [Abstract][Full Text] [Related]
6. Effect of variability of mechanical properties on the predictive capabilities of vulnerable coronary plaques. Stefanati M; Corti A; Corino VDA; Bennett MR; Teng Z; Dubini G; Rodriguez Matas JF Comput Methods Programs Biomed; 2024 Sep; 254():108271. PubMed ID: 38878362 [TBL] [Abstract][Full Text] [Related]
7. Numerical study to indicate the vulnerability of plaques using an idealized 2D plaque model based on plaque classification in the human coronary artery. Lee W; Choi GJ; Cho SW Med Biol Eng Comput; 2017 Aug; 55(8):1379-1387. PubMed ID: 27943103 [TBL] [Abstract][Full Text] [Related]
9. Assessment of superficial coronary vessel wall deformation and stress: validation of in silico models and human coronary arteries in vivo. Wu X; von Birgelen C; Li Z; Zhang S; Huang J; Liang F; Li Y; Wijns W; Tu S Int J Cardiovasc Imaging; 2018 Jun; 34(6):849-861. PubMed ID: 29397475 [TBL] [Abstract][Full Text] [Related]
10. Nonlinear multiscale analysis of coronary atherosclerotic vulnerable plaque artery: fluid-structural modeling with micromechanics. Massarwa E; Aronis Z; Eliasy R; Einav S; Haj-Ali R Biomech Model Mechanobiol; 2021 Oct; 20(5):1889-1901. PubMed ID: 34191188 [TBL] [Abstract][Full Text] [Related]
11. A finite element investigation on plaque vulnerability in realistic healthy and atherosclerotic human coronary arteries. Karimi A; Navidbakhsh M; Faghihi S; Shojaei A; Hassani K Proc Inst Mech Eng H; 2013 Feb; 227(2):148-61. PubMed ID: 23513986 [TBL] [Abstract][Full Text] [Related]
12. Compressive mechanical properties of atherosclerotic plaques--indentation test to characterise the local anisotropic behaviour. Chai CK; Speelman L; Oomens CW; Baaijens FP J Biomech; 2014 Mar; 47(4):784-92. PubMed ID: 24480703 [TBL] [Abstract][Full Text] [Related]
13. Stratification of risk in thin cap fibroatheromas using peak plaque stress estimates from idealized finite element models. Dolla WJ; House JA; Marso SP Med Eng Phys; 2012 Nov; 34(9):1330-8. PubMed ID: 22342558 [TBL] [Abstract][Full Text] [Related]
14. Discordance of the areas of peak wall shear stress and tissue stress in coronary artery plaques as revealed by fluid-structure interaction finite element analysis: a case study. Asanuma T; Higashikuni Y; Yamashita H; Nagai R; Hisada T; Sugiura S Int Heart J; 2013; 54(1):54-8. PubMed ID: 23428927 [TBL] [Abstract][Full Text] [Related]
15. Peak cap stress calculations in coronary atherosclerotic plaques with an incomplete necrotic core geometry. Kok AM; Speelman L; Virmani R; van der Steen AF; Gijsen FJ; Wentzel JJ Biomed Eng Online; 2016 May; 15(1):48. PubMed ID: 27145748 [TBL] [Abstract][Full Text] [Related]
16. A Framework for Local Mechanical Characterization of Atherosclerotic Plaques: Combination of Ultrasound Displacement Imaging and Inverse Finite Element Analysis. Akyildiz AC; Hansen HH; Nieuwstadt HA; Speelman L; De Korte CL; van der Steen AF; Gijsen FJ Ann Biomed Eng; 2016 Apr; 44(4):968-79. PubMed ID: 26399991 [TBL] [Abstract][Full Text] [Related]
17. The effects of plaque morphology and material properties on peak cap stress in human coronary arteries. Akyildiz AC; Speelman L; Nieuwstadt HA; van Brummelen H; Virmani R; van der Lugt A; van der Steen AF; Wentzel JJ; Gijsen FJ Comput Methods Biomech Biomed Engin; 2016; 19(7):771-9. PubMed ID: 26237279 [TBL] [Abstract][Full Text] [Related]
18. Mechanical instability of normal and aneurysmal arteries. Lee AY; Sanyal A; Xiao Y; Shadfan R; Han HC J Biomech; 2014 Dec; 47(16):3868-3875. PubMed ID: 25458146 [TBL] [Abstract][Full Text] [Related]
19. Local axial compressive mechanical properties of human carotid atherosclerotic plaques-characterisation by indentation test and inverse finite element analysis. Chai CK; Akyildiz AC; Speelman L; Gijsen FJ; Oomens CW; van Sambeek MR; van der Lugt A; Baaijens FP J Biomech; 2013 Jun; 46(10):1759-66. PubMed ID: 23664315 [TBL] [Abstract][Full Text] [Related]
20. Tissue prolapse and stresses in stented coronary arteries: A computer model for multi-layer atherosclerotic plaque. Hajiali Z; Dabagh M; Debusschere N; De Beule M; Jalali P Comput Biol Med; 2015 Nov; 66():39-46. PubMed ID: 26378501 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]