These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 25603499)

  • 21. Conjugated Microporous Poly(Benzochalcogenadiazole)s for Photocatalytic Oxidative Coupling of Amines under Visible Light.
    Wang ZJ; Garth K; Ghasimi S; Landfester K; Zhang KA
    ChemSusChem; 2015 Oct; 8(20):3459-64. PubMed ID: 26350332
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanoporous nitrogen-doped titanium dioxide with excellent photocatalytic activity under visible light irradiation produced by molecular layer deposition.
    Chen C; Li P; Wang G; Yu Y; Duan F; Chen C; Song W; Qin Y; Knez M
    Angew Chem Int Ed Engl; 2013 Aug; 52(35):9196-200. PubMed ID: 23843302
    [No Abstract]   [Full Text] [Related]  

  • 23. Graphene oxide/α-Bi(2)O(3) composites for visible-light photocatalysis, chemical catalysis, and solar energy conversion.
    Som T; Troppenz GV; Wendt RR; Wollgarten M; Rappich J; Emmerling F; Rademann K
    ChemSusChem; 2014 Mar; 7(3):854-65. PubMed ID: 24578169
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis of (±)-Tetrabenazine by Visible Light Photoredox Catalysis.
    Orgren LR; Maverick EE; Marvin CC
    J Org Chem; 2015 Dec; 80(24):12635-40. PubMed ID: 26544155
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Blue-Light-Induced Carbene-Transfer Reactions of Diazoalkanes.
    Hommelsheim R; Guo Y; Yang Z; Empel C; Koenigs RM
    Angew Chem Int Ed Engl; 2019 Jan; 58(4):1203-1207. PubMed ID: 30480350
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the similarity and dissimilarity between photocatalytic water splitting and photocatalytic degradation of pollutants.
    Pasternak S; Paz Y
    Chemphyschem; 2013 Jul; 14(10):2059-70. PubMed ID: 23754793
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Homogeneous photocatalytic reactions with organometallic and coordination compounds--perspectives for sustainable chemistry.
    Hoffmann N
    ChemSusChem; 2012 Feb; 5(2):352-71. PubMed ID: 22287209
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemical degradation of proteins in the solid state with a focus on photochemical reactions.
    Mozziconacci O; Schöneich C
    Adv Drug Deliv Rev; 2015 Oct; 93():2-13. PubMed ID: 25481682
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxygen switch in visible-light photoredox catalysis: radical additions and cyclizations and unexpected C-C-bond cleavage reactions.
    Zhu S; Das A; Bui L; Zhou H; Curran DP; Rueping M
    J Am Chem Soc; 2013 Feb; 135(5):1823-9. PubMed ID: 23330701
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Supramolecular photocatalysis: combining confinement and non-covalent interactions to control light initiated reactions.
    Vallavoju N; Sivaguru J
    Chem Soc Rev; 2014 Jun; 43(12):4084-101. PubMed ID: 24705505
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications.
    Regulacio MD; Han MY
    Acc Chem Res; 2016 Mar; 49(3):511-9. PubMed ID: 26864703
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visible-light Homogeneous Photocatalytic Conversion of CO
    Rao H; Bonin J; Robert M
    ChemSusChem; 2017 Nov; 10(22):4447-4450. PubMed ID: 28862388
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [2+2] cycloaddition of 1,3-dienes by visible light photocatalysis.
    Hurtley AE; Lu Z; Yoon TP
    Angew Chem Int Ed Engl; 2014 Aug; 53(34):8991-4. PubMed ID: 24985967
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Visible Light Photocatalysis for the Generation and Use of Reactive Azolyl and Polyfluoroaryl Intermediates.
    Arora A; Weaver JD
    Acc Chem Res; 2016 Oct; 49(10):2273-2283. PubMed ID: 27682342
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photocatalytic fluoroalkylation reactions of organic compounds.
    Barata-Vallejo S; Bonesi SM; Postigo A
    Org Biomol Chem; 2015 Dec; 13(46):11153-83. PubMed ID: 26464314
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photochemical degradation of triazine herbicides - comparison of homogeneous and heterogeneous photocatalysis.
    Klementova S; Zlamal M
    Photochem Photobiol Sci; 2013 Apr; 12(4):660-3. PubMed ID: 23069861
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visible Light Photochemical Reactions for Nucleic Acid-Based Technologies.
    Koo B; Yoo H; Choi HJ; Kim M; Kim C; Kim KT
    Molecules; 2021 Jan; 26(3):. PubMed ID: 33494512
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kagóme Cobalt(II)-Organic Layers as Robust Scaffolds for Highly Efficient Photocatalytic Oxygen Evolution.
    Xu J; Wang Z; Yu W; Sun D; Zhang Q; Tung CH; Wang W
    ChemSusChem; 2016 May; 9(10):1146-52. PubMed ID: 27098180
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced phenol bioavailability by means of photocatalysis.
    Wang J; Zhang Y; Yan N; Chen J; Rittmann BE
    Biodegradation; 2013 Sep; 24(5):597-602. PubMed ID: 23229742
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Scale-Up of Photochemical Reactions: Transitioning from Lab Scale to Industrial Production.
    Zondag SDA; Mazzarella D; Noël T
    Annu Rev Chem Biomol Eng; 2023 Jun; 14():283-300. PubMed ID: 36913716
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.