These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 25603863)

  • 21. Using a label-free proteomics method to identify differentially abundant proteins in closely related hypo- and hypervirulent clinical Mycobacterium tuberculosis Beijing isolates.
    de Souza GA; Fortuin S; Aguilar D; Pando RH; McEvoy CR; van Helden PD; Koehler CJ; Thiede B; Warren RM; Wiker HG
    Mol Cell Proteomics; 2010 Nov; 9(11):2414-23. PubMed ID: 20190197
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rational engineering of a virulence gene from Mycobacterium tuberculosis facilitates proteomic analysis of a natural protein N-terminus.
    Reyna C; Mba Medie F; Champion MM; Champion PA
    Sci Rep; 2016 Sep; 6():33265. PubMed ID: 27625110
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cell Envelope Proteomics of Mycobacteria.
    Hermann C; Karamchand L; Blackburn JM; Soares NC
    J Proteome Res; 2021 Jan; 20(1):94-109. PubMed ID: 33140963
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proteomic analysis of extracellular vesicles derived from Mycobacterium tuberculosis.
    Lee J; Kim SH; Choi DS; Lee JS; Kim DK; Go G; Park SM; Kim SH; Shin JH; Chang CL; Gho YS
    Proteomics; 2015 Oct; 15(19):3331-7. PubMed ID: 26201501
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cell cycle: proteomics gives it a spin.
    Archambault V
    Expert Rev Proteomics; 2005 Aug; 2(4):615-25. PubMed ID: 16097893
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mycobacteria and their sweet proteins: An overview of protein glycosylation and lipoglycosylation in M. tuberculosis.
    Mehaffy C; Belisle JT; Dobos KM
    Tuberculosis (Edinb); 2019 Mar; 115():1-13. PubMed ID: 30948163
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pathogenicity in the tubercle bacillus: molecular and evolutionary determinants.
    Gordon SV; Bottai D; Simeone R; Stinear TP; Brosch R
    Bioessays; 2009 Apr; 31(4):378-88. PubMed ID: 19274661
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of post-translational modifications in the acquisition of drug resistance in Mycobacterium tuberculosis.
    Arora G; Bothra A; Prosser G; Arora K; Sajid A
    FEBS J; 2021 Jun; 288(11):3375-3393. PubMed ID: 33021056
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative Proteomic and Phosphoproteomic Analysis of H37Ra and H37Rv Strains of Mycobacterium tuberculosis.
    Verma R; Pinto SM; Patil AH; Advani J; Subba P; Kumar M; Sharma J; Dey G; Ravikumar R; Buggi S; Satishchandra P; Sharma K; Suar M; Tripathy SP; Chauhan DS; Gowda H; Pandey A; Gandotra S; Prasad TS
    J Proteome Res; 2017 Apr; 16(4):1632-1645. PubMed ID: 28241730
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Scrutiny of Mycobacterium tuberculosis 19 kDa antigen proteoforms provides new insights in the lipoglycoprotein biogenesis paradigm.
    Parra J; Marcoux J; Poncin I; Canaan S; Herrmann JL; Nigou J; Burlet-Schiltz O; Rivière M
    Sci Rep; 2017 Mar; 7():43682. PubMed ID: 28272507
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic post-translational modification profiling of
    Budzik JM; Swaney DL; Jimenez-Morales D; Johnson JR; Garelis NE; Repasy T; Roberts AW; Popov LM; Parry TJ; Pratt D; Ideker T; Krogan NJ; Cox JS
    Elife; 2020 Jan; 9():. PubMed ID: 31951200
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New drug targets for Mycobacterium tuberculosis.
    Chopra P; Meena LS; Singh Y
    Indian J Med Res; 2003 Jan; 117():1-9. PubMed ID: 12866819
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bacterial protein-O-mannosylating enzyme is crucial for virulence of Mycobacterium tuberculosis.
    Liu CF; Tonini L; Malaga W; Beau M; Stella A; Bouyssié D; Jackson MC; Nigou J; Puzo G; Guilhot C; Burlet-Schiltz O; Rivière M
    Proc Natl Acad Sci U S A; 2013 Apr; 110(16):6560-5. PubMed ID: 23550160
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Frontier of mycobacterium research--host vs. mycobacterium].
    Okada M; Shirakawa T
    Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of Quantitative Proteomic Differences between Mycobacterium tuberculosis Lineages with Altered Virulence.
    Peters JS; Calder B; Gonnelli G; Degroeve S; Rajaonarifara E; Mulder N; Soares NC; Martens L; Blackburn JM
    Front Microbiol; 2016; 7():813. PubMed ID: 27303394
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proteins unique to intraphagosomally grown Mycobacterium tuberculosis.
    Mattow J; Siejak F; Hagens K; Becher D; Albrecht D; Krah A; Schmidt F; Jungblut PR; Kaufmann SH; Schaible UE
    Proteomics; 2006 Apr; 6(8):2485-94. PubMed ID: 16548060
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gel-free mass spectrometry-based high throughput proteomics: tools for studying biological response of proteins and proteomes.
    Roe MR; Griffin TJ
    Proteomics; 2006 Sep; 6(17):4678-87. PubMed ID: 16888762
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of Mycobacterium marinum virulence genes using signature-tagged mutagenesis and the goldfish model of mycobacterial pathogenesis.
    Ruley KM; Ansede JH; Pritchett CL; Talaat AM; Reimschuessel R; Trucksis M
    FEMS Microbiol Lett; 2004 Mar; 232(1):75-81. PubMed ID: 15019737
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Host-pathogen interactions: a proteomic view.
    Zhang CG; Chromy BA; McCutchen-Maloney SL
    Expert Rev Proteomics; 2005 Apr; 2(2):187-202. PubMed ID: 15892564
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mycobacterium tuberculosis lipoproteins in virulence and immunity - fighting with a double-edged sword.
    Becker K; Sander P
    FEBS Lett; 2016 Nov; 590(21):3800-3819. PubMed ID: 27350117
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.