These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 25604108)

  • 1. Direct printing of reduced graphene oxide on planar or highly curved surfaces with high resolutions using electrohydrodynamics.
    An BW; Kim K; Kim M; Kim SY; Hur SH; Park JU
    Small; 2015 May; 11(19):2263-8. PubMed ID: 25604108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution electrohydrodynamic inkjet printing of stretchable metal oxide semiconductor transistors with high performance.
    Kim SY; Kim K; Hwang YH; Park J; Jang J; Nam Y; Kang Y; Kim M; Park HJ; Lee Z; Choi J; Kim Y; Jeong S; Bae BS; Park JU
    Nanoscale; 2016 Oct; 8(39):17113-17121. PubMed ID: 27722626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D nanostructured inkjet printed graphene via UV-pulsed laser irradiation enables paper-based electronics and electrochemical devices.
    Das SR; Nian Q; Cargill AA; Hondred JA; Ding S; Saei M; Cheng GJ; Claussen JC
    Nanoscale; 2016 Sep; 8(35):15870-9. PubMed ID: 27510913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inkjet-printed graphene electronics.
    Torrisi F; Hasan T; Wu W; Sun Z; Lombardo A; Kulmala TS; Hsieh GW; Jung S; Bonaccorso F; Paul PJ; Chu D; Ferrari AC
    ACS Nano; 2012 Apr; 6(4):2992-3006. PubMed ID: 22449258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Resolution Printing of 3D Structures Using an Electrohydrodynamic Inkjet with Multiple Functional Inks.
    An BW; Kim K; Lee H; Kim SY; Shim Y; Lee DY; Song JY; Park JU
    Adv Mater; 2015 Aug; 27(29):4322-8. PubMed ID: 26095718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Inkjet-Printed Reduced and Functionalized Water-Dispersible Graphene Oxide and Graphene on Polymer Substrate-Application to Printed Temperature Sensors.
    Barmpakos D; Belessi V; Schelwald R; Kaltsas G
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Resolution Transfer Printing of Graphene Lines for Fully Printed, Flexible Electronics.
    Song D; Mahajan A; Secor EB; Hersam MC; Francis LF; Frisbie CD
    ACS Nano; 2017 Jul; 11(7):7431-7439. PubMed ID: 28686415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inkjet printing of upconversion nanoparticles for anti-counterfeit applications.
    You M; Zhong J; Hong Y; Duan Z; Lin M; Xu F
    Nanoscale; 2015 Mar; 7(10):4423-31. PubMed ID: 25613526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High performance organic nonvolatile flash memory transistors with high-resolution reduced graphene oxide patterns as a floating gate.
    Chung DS; Lee SM; Back JY; Kwon SK; Kim YH; Chang ST
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9524-9. PubMed ID: 24846849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inkjet Printing of High Conductivity, Flexible Graphene Patterns.
    Secor EB; Prabhumirashi PL; Puntambekar K; Geier ML; Hersam MC
    J Phys Chem Lett; 2013 Apr; 4(8):1347-51. PubMed ID: 26282151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transparent, flexible, all-reduced graphene oxide thin film transistors.
    He Q; Wu S; Gao S; Cao X; Yin Z; Li H; Chen P; Zhang H
    ACS Nano; 2011 Jun; 5(6):5038-44. PubMed ID: 21524119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution electrohydrodynamic jet printing.
    Park JU; Hardy M; Kang SJ; Barton K; Adair K; Mukhopadhyay DK; Lee CY; Strano MS; Alleyne AG; Georgiadis JG; Ferreira PM; Rogers JA
    Nat Mater; 2007 Oct; 6(10):782-9. PubMed ID: 17676047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms, Capabilities, and Applications of High-Resolution Electrohydrodynamic Jet Printing.
    Onses MS; Sutanto E; Ferreira PM; Alleyne AG; Rogers JA
    Small; 2015 Sep; 11(34):4237-66. PubMed ID: 26122917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Surface Treatment on Performance and Internal Stacking Mode of Electrohydrodynamic Printed Graphene and Its Microsupercapacitor.
    Zhong J; Fang Z; Luo D; Ning H; Qiu T; Li M; Yang Y; Fu X; Yao R; Peng J
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3621-3632. PubMed ID: 36598168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inkjet printing of graphene.
    Arapov K; Abbel R; de With G; Friedrich H
    Faraday Discuss; 2014; 173():323-36. PubMed ID: 25466243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes.
    Cao X; Chen H; Gu X; Liu B; Wang W; Cao Y; Wu F; Zhou C
    ACS Nano; 2014 Dec; 8(12):12769-76. PubMed ID: 25497107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inkjet-printed zinc tin oxide thin-film transistor.
    Kim D; Jeong Y; Song K; Park SK; Cao G; Moon J
    Langmuir; 2009 Sep; 25(18):11149-54. PubMed ID: 19735156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterned surface with controllable wettability for inkjet printing of flexible printed electronics.
    Nguyen PQ; Yeo LP; Lok BK; Lam YC
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4011-6. PubMed ID: 24571607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inkjet printed, high mobility inorganic-oxide field effect transistors processed at room temperature.
    Dasgupta S; Kruk R; Mechau N; Hahn H
    ACS Nano; 2011 Dec; 5(12):9628-38. PubMed ID: 22077094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A general route toward complete room temperature processing of printed and high performance oxide electronics.
    Baby TT; Garlapati SK; Dehm S; Häming M; Kruk R; Hahn H; Dasgupta S
    ACS Nano; 2015 Mar; 9(3):3075-83. PubMed ID: 25693653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.