These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 25604598)

  • 1. Selective arylthiolane deprotection by singlet oxygen: a promising tool for sensors and prodrugs.
    Lamb BM; Barbas CF
    Chem Commun (Camb); 2015 Feb; 51(15):3196-9. PubMed ID: 25604598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced ROS production and cell death through combined photo- and sono-activation of conventional photosensitising drugs.
    McCaughan B; Rouanet C; Fowley C; Nomikou N; McHale AP; McCarron PA; Callan JF
    Bioorg Med Chem Lett; 2011 Oct; 21(19):5750-2. PubMed ID: 21875807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of 1268 nm emission for comparison of singlet oxygen (1 delta g) production efficiency of various dyes.
    Arakane K; Ryu A; Takarada K; Masunaga T; Shinmoto K; Kobayashi R; Mashiko S; Nagano T; Hirobe M
    Chem Pharm Bull (Tokyo); 1996 Jan; 44(1):1-4. PubMed ID: 8582028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorus dendrimers and photodynamic therapy. Spectroscopic studies on two dendrimer-photosensitizer complexes: Cationic phosphorus dendrimer with rose bengal and anionic phosphorus dendrimer with methylene blue.
    Dabrzalska M; Zablocka M; Mignani S; Majoral JP; Klajnert-Maculewicz B
    Int J Pharm; 2015 Aug; 492(1-2):266-74. PubMed ID: 26117192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photodynamic action of some sensitizers by photooxidation of luminol.
    Wierrani F; Kubin A; Loew HG; Henry M; Spängler B; Bodner K; Grünberger W; Ebermann R; Alth G
    Naturwissenschaften; 2002 Oct; 89(10):466-9. PubMed ID: 12384722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rose bengal-sensitized photooxidation of 2-chlorophenol in water using solar simulated light.
    Miller JS
    Water Res; 2005; 39(2-3):412-22. PubMed ID: 15644250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of singlet oxygen in the thermal decomposition of 3-hydroxymethyl-3,4,4-trimethyl-1,2-dioxetane, a chemical source of triplet-excited ketones.
    Briviba K; Saha-Möller CR; Adam W; Sies H
    Biochem Mol Biol Int; 1996 Apr; 38(4):647-51. PubMed ID: 8728092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The antimicrobial activity of photodynamic therapy against Streptococcus mutans using different photosensitizers.
    Rolim JP; de-Melo MA; Guedes SF; Albuquerque-Filho FB; de Souza JR; Nogueira NA; Zanin IC; Rodrigues LK
    J Photochem Photobiol B; 2012 Jan; 106():40-6. PubMed ID: 22070899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An efficient rose bengal based nanoplatform for photodynamic therapy.
    Gianotti E; Martins Estevão B; Cucinotta F; Hioka N; Rizzi M; Renò F; Marchese L
    Chemistry; 2014 Aug; 20(35):10921-5. PubMed ID: 25116185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Special reactive oxygen species generation by a highly photostable BODIPY-based photosensitizer for selective photodynamic therapy.
    Lai YC; Su SY; Chang CC
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):12935-43. PubMed ID: 24313397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Singlet-oxygen oxidation of 5-hydroxymethylfurfural in continuous flow.
    Heugebaert TS; Stevens CV; Kappe CO
    ChemSusChem; 2015 May; 8(10):1648-51. PubMed ID: 25505009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photooxidation of acyclovir with thermally generated triplet excited ketones. A comparison with type I and II photosensitizers.
    Iqbal J; Husain A; Gupta A
    Chem Pharm Bull (Tokyo); 2006 Apr; 54(4):519-21. PubMed ID: 16595956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skeletal sarcoplasmic reticulum dysfunction induced by reactive oxygen intermediates derived from photoactivated rose bengal.
    Ishibashi T; Lee CI; Okabe E
    J Pharmacol Exp Ther; 1996 Apr; 277(1):350-8. PubMed ID: 8613941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model studies on the photosensitized isomerization of bixin.
    Montenegro MA; Rios Ade O; Mercadante AZ; Nazareno MA; Borsarelli CD
    J Agric Food Chem; 2004 Jan; 52(2):367-73. PubMed ID: 14733523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of therapeutic Au-methylene blue nanoparticles for targeted photodynamic therapy of cervical cancer cells.
    Yu J; Hsu CH; Huang CC; Chang PY
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):432-41. PubMed ID: 25494339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly efficient and photostable photosensitizer based on BODIPY chromophore.
    Yogo T; Urano Y; Ishitsuka Y; Maniwa F; Nagano T
    J Am Chem Soc; 2005 Sep; 127(35):12162-3. PubMed ID: 16131160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. "Switched-on" flexible chalcogenopyrylium photosensitizers. Changes in photophysical properties upon binding to DNA.
    Ohulchanskyy TY; Gannon MK; Ye M; Skripchenko A; Wagner SJ; Prasad PN; Detty MR
    J Phys Chem B; 2007 Aug; 111(32):9686-92. PubMed ID: 17645329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoinduced protein modifications by methylene blue and naproxen.
    Bracchitta G; Catalfo A; De Guidi G
    Photochem Photobiol Sci; 2012 Dec; 11(12):1886-96. PubMed ID: 22930354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methylene blue-containing silica-coated magnetic particles: a potential magnetic carrier for photodynamic therapy.
    Tada DB; Vono LL; Duarte EL; Itri R; Kiyohara PK; Baptista MS; Rossi LM
    Langmuir; 2007 Jul; 23(15):8194-9. PubMed ID: 17590032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoprotection by porcine eumelanin against singlet oxygen production.
    Wang A; Marino AR; Gasyna Z; Gasyna E; Norris J
    Photochem Photobiol; 2008; 84(3):679-82. PubMed ID: 18422874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.