These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 25604821)

  • 1. Tween 20-stabilized gold nanoparticles combined with adenosine triphosphate-BODIPY conjugates for the fluorescence detection of adenosine with more than 1000-fold selectivity.
    Hung SY; Shih YC; Tseng WL
    Anal Chim Acta; 2015 Feb; 857():64-70. PubMed ID: 25604821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetite nanoparticle-induced fluorescence quenching of adenosine triphosphate-BODIPY Conjugates: application to adenosine triphosphate and pyrophosphate sensing.
    Yu CJ; Wu SM; Tseng WL
    Anal Chem; 2013 Sep; 85(18):8559-65. PubMed ID: 23919280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoinduced electron transfer between Fe(III) and adenosine triphosphate-BODIPY conjugates: Application to alkaline-phosphatase-linked immunoassay.
    Lin JH; Yang YC; Shih YC; Hung SY; Lu CY; Tseng WL
    Biosens Bioelectron; 2016 Mar; 77():242-8. PubMed ID: 26409025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CeO
    Tong L; Wang X; Gao W; Liu Z; Chen Z; Cheng G; Cao W; Sui M; Tang B
    Anal Chem; 2018 Dec; 90(24):14507-14513. PubMed ID: 30477304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label-free detection of adenosine based on fluorescence resonance energy transfer between fluorescent silica nanoparticles and unmodified gold nanoparticles.
    Qiang W; Liu H; Li W; Chen X; Xu D
    Anal Chim Acta; 2014 May; 828():92-8. PubMed ID: 24845820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Terbium ion-coordinated carbon dots for fluorescent aptasensing of adenosine 5'-triphosphate with unmodified gold nanoparticles.
    Xu M; Gao Z; Zhou Q; Lin Y; Lu M; Tang D
    Biosens Bioelectron; 2016 Dec; 86():978-984. PubMed ID: 27498324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatibility FeOOH QD@ATP-BODIPY nanocomposite for glutathione detection and intracellular imaging.
    Tong L; Wang X; Sun C; Lu R; Chen T; Wang J; Chen Z; Tang B
    Talanta; 2024 Aug; 276():126251. PubMed ID: 38761657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boron-dipyrromethene based reversible and reusable selective chemosensor for fluoride detection.
    Madhu S; Ravikanth M
    Inorg Chem; 2014 Feb; 53(3):1646-53. PubMed ID: 24450883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A gold nanoparticle-based fluorescence sensor for high sensitive and selective detection of thiols in living cells.
    Xu J; Yu H; Hu Y; Chen M; Shao S
    Biosens Bioelectron; 2016 Jan; 75():1-7. PubMed ID: 26278044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of adenosine triphosphate and glutathione through gold nanoparticles assisted laser desorption/ionization mass spectrometry.
    Huang YF; Chang HT
    Anal Chem; 2007 Jul; 79(13):4852-9. PubMed ID: 17523592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enrichment and fluorescence enhancement of adenosine using aptamer-gold nanoparticles, PDGF aptamer, and Oligreen.
    Chen SJ; Huang CC; Chang HT
    Talanta; 2010 Apr; 81(1-2):493-8. PubMed ID: 20188952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel fluorescent probe for Au(III)/Au(I) ions based on an intramolecular hydroamination of a Bodipy derivative and its application to bioimaging.
    Wang JB; Wu QQ; Min YZ; Liu YZ; Song QH
    Chem Commun (Camb); 2012 Jan; 48(5):744-6. PubMed ID: 22121504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective extraction of thiol-containing peptides in seawater using Tween 20-capped gold nanoparticles followed by capillary electrophoresis with laser-induced fluorescence.
    Shen CC; Tseng WL; Hsieh MM
    J Chromatogr A; 2012 Jan; 1220():162-8. PubMed ID: 22186493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Label-Free Fluorescent DNA Calculator Based on Gold Nanoparticles for Sensitive Detection of ATP.
    Zhang J; Zhang S; Niu C; Liu C; Du J; Chen Y
    Molecules; 2018 Sep; 23(10):. PubMed ID: 30274237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colorimetric assay for S-adenosylhomocysteine hydrolase activity and inhibition using fluorosurfactant-capped gold nanoparticles.
    Lin JH; Chang CW; Wu ZH; Tseng WL
    Anal Chem; 2010 Nov; 82(21):8775-9. PubMed ID: 20945873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fluorescent "on-off-on" probe for sensitive detection of ATP based on ATP displacing DNA from nanoceria.
    Li F; Hu X; Wang F; Zheng B; Du J; Xiao D
    Talanta; 2018 Mar; 179():285-291. PubMed ID: 29310233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BODIPY-based self-assembled nanoparticles as fluorescence turn-on sensor for the selective detection of zinc in human hair.
    Jia MY; Wang Y; Liu Y; Niu LY; Feng L
    Biosens Bioelectron; 2016 Nov; 85():515-521. PubMed ID: 27209578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of mercury(II) by quantum dot/DNA/gold nanoparticle ensemble based nanosensor via nanometal surface energy transfer.
    Li M; Wang Q; Shi X; Hornak LA; Wu N
    Anal Chem; 2011 Sep; 83(18):7061-5. PubMed ID: 21842845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymerization-sensitive switch-on monomer for terminal transferase activity assay.
    Batule BS; Lee CY; Park KS; Park HG
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):256-259. PubMed ID: 30688096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A DNA hybridization detection based on fluorescence resonance energy transfer between dye-doped core-shell silica nanoparticles and gold nanoparticles.
    Gao F; Cui P; Chen X; Ye Q; Li M; Wang L
    Analyst; 2011 Oct; 136(19):3973-80. PubMed ID: 21845282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.