These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 2560497)

  • 41. In vitro and in vivo effects of lead, methyl mercury and mercury on inositol 1,4,5-trisphosphate and 1,3,4,5-tetrakisphosphate receptor bindings in rat brain.
    Chetty CS; Rajanna S; Hall E; Yallapragada PR; Rajanna B
    Toxicol Lett; 1996 Sep; 87(1):11-7. PubMed ID: 8701439
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modulation of inositol 1,4,5-trisphosphate binding to the various inositol 1,4,5-trisphosphate receptor isoforms by thimerosal and cyclic ADP-ribose.
    Vanlingen S; Sipma H; De Smet P; Callewaert G; Missiaen L; De Smedt H; Parys JB
    Biochem Pharmacol; 2001 Apr; 61(7):803-9. PubMed ID: 11274965
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Isolation and functional characterization of an inositol trisphosphate receptor from brain.
    Snyder SH; Supattapone S
    Cell Calcium; 1989 Jul; 10(5):337-42. PubMed ID: 2548727
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Type 1 inositol 1,4,5-trisphosphate receptor knock-out mice: their phenotypes and their meaning in neuroscience and clinical practice.
    Matsumoto M; Nagata E
    J Mol Med (Berl); 1999 May; 77(5):406-11. PubMed ID: 10426189
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Calcium release in HSY cells conforms to a steady-state mechanism involving regulation of the inositol 1,4,5-trisphosphate receptor Ca2+ channel by luminal [Ca2+].
    Tanimura A; Turner RJ
    J Cell Biol; 1996 Feb; 132(4):607-16. PubMed ID: 8647892
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Thimerosal stimulates Ca2+ flux through inositol 1,4,5-trisphosphate receptor type 1, but not type 3, via modulation of an isoform-specific Ca2+-dependent intramolecular interaction.
    Bultynck G; Szlufcik K; Kasri NN; Assefa Z; Callewaert G; Missiaen L; Parys JB; De Smedt H
    Biochem J; 2004 Jul; 381(Pt 1):87-96. PubMed ID: 15015936
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Agonist-induced Ca2+ entry determined by inositol 1,4,5-trisphosphate recognition.
    van Rossum DB; Patterson RL; Kiselyov K; Boehning D; Barrow RK; Gill DL; Snyder SH
    Proc Natl Acad Sci U S A; 2004 Feb; 101(8):2323-7. PubMed ID: 14983008
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evidence for multiple intracellular calcium pools in GH4C1 cells: investigations using thapsigargin.
    Koshiyama H; Tashjian AH
    Biochem Biophys Res Commun; 1991 May; 177(1):551-8. PubMed ID: 1645964
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modifications of intracellular calcium release channels and calcium mobilization following 70% hepatectomy.
    Díaz-Muñoz M; Cañedo-Merino R; Gutiérrez-Salinas J; Hernández-Muñoz R
    Arch Biochem Biophys; 1998 Jan; 349(1):105-12. PubMed ID: 9439588
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of and chromogranin effect on inositol 1,4,5-trisphosphate sensitivity of cytoplasmic and nucleoplasmic inositol 1,4,5-trisphosphate receptor/Ca2+ channels.
    Huh YH; Kim KD; Yoo SH
    Biochemistry; 2007 Dec; 46(49):14032-43. PubMed ID: 17997581
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Calcium mobilization is required for nuclear vesicle fusion in vitro: implications for membrane traffic and IP3 receptor function.
    Sullivan KM; Busa WB; Wilson KL
    Cell; 1993 Jul; 73(7):1411-22. PubMed ID: 8391933
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Intracellular magnesium and inositol 1,4,5-trisphosphate receptor: molecular mechanisms of interaction, physiology and pharmacology.
    Volpe P; Vezú L
    Magnes Res; 1993 Sep; 6(3):267-74. PubMed ID: 8292501
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Calcium and inositol 1,4,5-trisphosphate receptors: a complex relationship.
    Taylor CW; Marshall IC
    Trends Biochem Sci; 1992 Oct; 17(10):403-7. PubMed ID: 1333657
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inhibition of nuclear vesicle fusion by antibodies that block activation of inositol 1,4,5-trisphosphate receptors.
    Sullivan KM; Lin DD; Agnew W; Wilson KL
    Proc Natl Acad Sci U S A; 1995 Sep; 92(19):8611-5. PubMed ID: 7567984
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inhibition of nicardipine on amygdala kindling in rats.
    Yue W; Wang L; Zhang F; Zhong WZ; Liu ZT
    Acta Pharmacol Sin; 2001 Apr; 22(4):365-8. PubMed ID: 11742591
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Calcium signalling: how do IP3 receptors work?
    Dawson AP
    Curr Biol; 1997 Sep; 7(9):R544-7. PubMed ID: 9285705
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Autophosphorylation of inositol 1,4,5-trisphosphate receptors.
    Ferris CD; Cameron AM; Bredt DS; Huganir RL; Snyder SH
    J Biol Chem; 1992 Apr; 267(10):7036-41. PubMed ID: 1313030
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cooperative activation of IP3 receptors by sequential binding of IP3 and Ca2+ safeguards against spontaneous activity.
    Marchant JS; Taylor CW
    Curr Biol; 1997 Jul; 7(7):510-8. PubMed ID: 9210378
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Allosteric regulation by cytoplasmic Ca2+ and IP3 of the gating of IP3 receptors in permeabilized guinea-pig vascular smooth muscle cells.
    Hirose K; Kadowaki S; Iino M
    J Physiol; 1998 Jan; 506 ( Pt 2)(Pt 2):407-14. PubMed ID: 9490868
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The relative order of IP3 sensitivity of types 1 and 3 IP3 receptors is pH dependent.
    De Smet P; Parys JB; Vanlingen S; Bultynck G; Callewaert G; Galione A; De Smedt H; Missiaen L
    Pflugers Arch; 1999 Jul; 438(2):154-8. PubMed ID: 10370101
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.